"Prüfung möglicher Umweltauswirkungen des Einsatzes von Abfall- und Reststoffen zur Bruch-Hohlraumverfüllung in Steinkohlenbergwerken in NRW"

Teil 2

6. Sitzung des begleitenden Arbeitskreises

07. 02. 2018

Bisherige Ablauf der Bearbeitung

- **16.07.2015** Auftrag Teil 1 und Teil 2 des Gutachtens
- 23.06.2017 Einstellung Teil 1 auf der homepage

Vorlaufend:

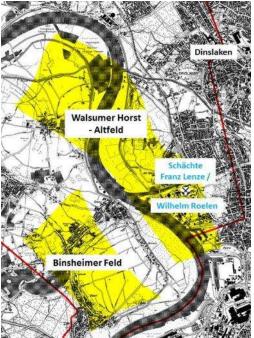
- Begleitung durch den AK: 5 Sitzungen
- 02.02.2017 Versand Entwurf
- Bis 15.03.2017 Eingang 9 Stellungnahmen
- 21.12.2017 Versand Zwischenbericht Teil 2
 - Eingang 2 Stellungnahmen

 07.02.2018 AK6: Zwischenbericht Teil 2, Gesamtergebnisse

Inhalt

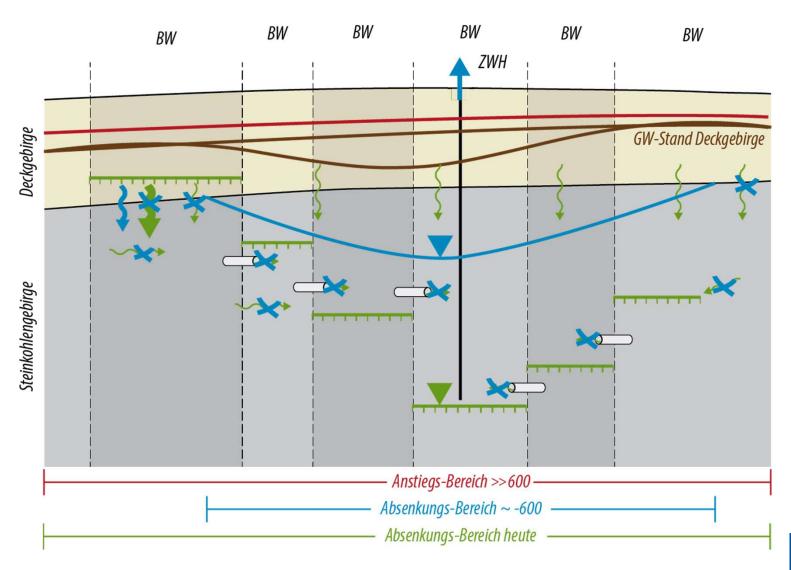
- 1. Anmerkungen zum Zwischenbericht
- 2. Ergebnisse im Teil 2
 - 1. Immissionsneutrale Verbringung
 - 2. BW Walsum und BW Hugo/Consolidation (Consol)
 - 3. Risikoanalyse
 - Gefährdung, Freisetzung (Sorption), Ausbreitung
 - 4. Risikoanalyse PCB
 - Recherchen Altölentsorgung
 - 100 L Wasserproben
 - Aktualisierung Risikoabschätzung
- 3. Zeitplan und weiteres Vorgehen

Anmerkungen zum Zwischenbericht



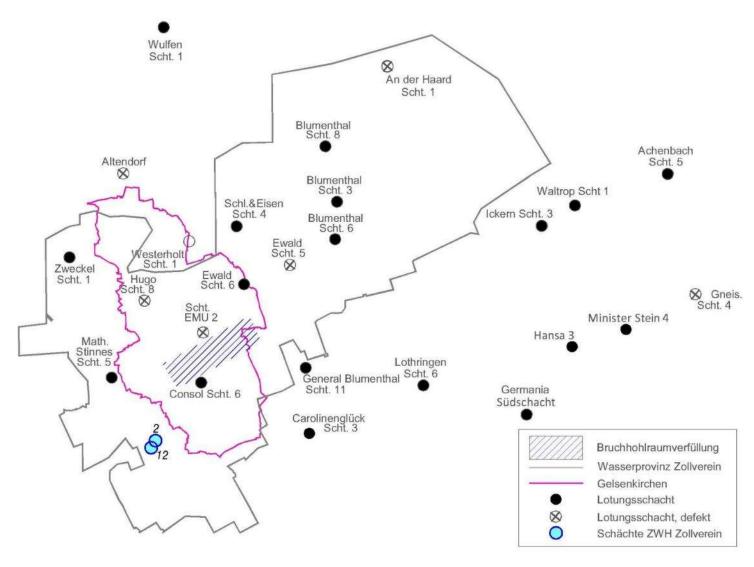
Landesverband Bergbaubetroffener, 18.01.2018

- Gültigkeit Machbarkeitsstudie für das Binsheimer Feld ?
 - Einschränkungen hinsichtlich Übertragbarkeit der hydrogeologischen Randbedingungen der Machbarkeitsstudie vom 01.08.1990 auf den linksrheinischen Abbaubereich Binsheimer Feld galten für "weiter westlich gelegene Schichtenfolgen" in denen keine BHV stattfand



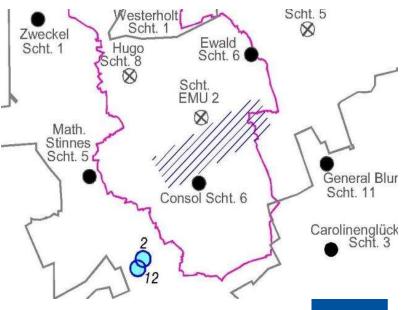
- Tendenzielle Verringerung Grubenwasseranfall beim Anstieg?
 - Verkleinerung Absenkungstrichter
 - "abdrücken" weiter entfernterer Zuläufe
 - tw. Verringerung Leakage

Schematische Systemzusammenhänge Grubenwasseranstieg - Grubenwassermenge


Stadt Gelsenkirchen 10.01.2018

Sind Schöpfproben aus Schächten in der Nähe der BHV möglich?

Ergebnisse LANUV-Beprobung Einleitung Zollverein
 7.11.2017 (Eisenausfällungen)


Überblick über die Lotungsschächte

Überwachungen der Grubenwasserstände

- Ausbau Schächte bei der Verfüllung mit Lotleitungen zur Überwachung des Grubenwasserniveau (DN 100 - DN 300)
- Lotungsschächte EMU 2 und Consol 6
- EMU 2 ist verstopft.
 - In 2010 Versuch mit Bohrmaschine
 - Kamerabefahrung zeigt mehr Hindernisse
- Consol 6 (verklemmte Messonde)
 - Bergeversuch Ende 2017 gescheitert
 - Neue Untersuchung in 2018 angestrebt
 - Risiko, dass der Lotdraht abreißt und die Messstelle dauerhaft blockiert

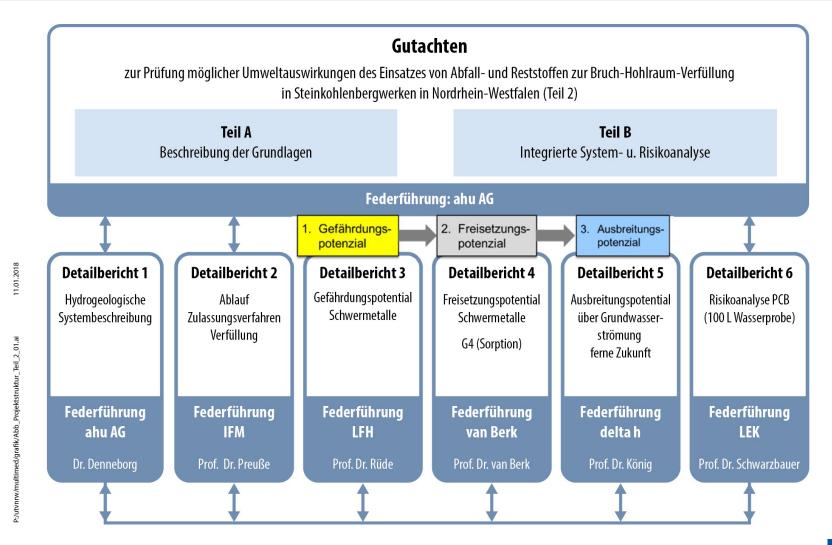
Überwachungen Grubenwasser

- Mögliche Probenahme in Schacht Ewald 6
 - liegt nicht im "Abstrom" des BW Consolidation

- Repräsentativität der Proben
 - Freisetzung Blei erst in > 1000 Jahren
 - Schöpfproben aus einer Steigleitung sind nicht repräsentativ für das Grubenwasser

Analysen Eisenockerablagerungen Einleitstelle Zollverein - Probenahme 7.11.2017

PCB-28	DIN 38414-S20	<4,4 µg/kg
PCB-52	DIN 38414-S20	<4,4 µg/kg
PCB-101	DIN 38414-S20	<4,4 µg/kg
PCB-118	DIN 38414-S20	<4,4 µg/kg
PCB-138	DIN 38414-S20	<4,4 µg/kg
PCB-153	DIN 38414-S20	<4,4 µg/kg
PCB-180	DIN 38414-S20	<4,4 µg/kg
TCBT 21	Analog DIN 38414-S20	<4,4 µg/kg
TCBT 27	Analog DIN 38414-S20	<4,4 µg/kg
TCBT 28	Analog DIN 38414-S20	<4,4 µg/kg
TCBT 52	Analog DIN 38414-S20	<4,4 µg/kg
TCBT 74	Analog DIN 38414-S20	<4,4 µg/kg
TCBT 80	Analog DIN 38414-S20	<4,4 µg/kg


Umweltqualitätsnorm für Schwebstoffe in Oberflächengewässern: 20 µg/kg

Ergebnisse Teil 2

Konsortium und Aufbau des Gutachtens Teil 2

Aufgaben in Teil 2

- Immissionsneutralität 11 BW
- Risikoanalyse BW Walsum und BW Hugo/Consol "vollständiger Einschluss"
- Ergänzungen Risikoanalyse BHV Walsum und Hugo/Consol
 - Sorption (Prof. van Berk)
 - Grundwasserfließsystem "ferne Zukunft" (Prof. König)
- Ergänzungen Risikoanalyse PCB
 - Recherche Altölentsorgung
 - Recherche Punktquellen
 - 100L Proben

ImmissionsneutraleVerbringung

Begriffe "Immissionsneutralität" und Risikoeinschätzung

- Flugaschen und -stäube aus <u>steinkohlengefeuerten</u>
 <u>Kraftwerken</u>
- LWA 21.07.1986, Grundannahmen:
 - Reststoffe haben keine grundsätzlich andere chemische Zusammensetzung und damit kein anderes Gefährdungspotential als das umgebende Gebirge und das Tiefengrundwasser, aus dem die Kohlen stammen
 - Ausbildung einer "inneren Barriere" entweder von vornherein oder durch Zusätze
 - Ausbildung einer Dichteschichtung im Tiefengrundwasser (keine Störung durch Grubenwasserhaltung)
- Zahlreiche Gutachten (u.a. Machbarkeitsstudie)

Runderlasse LOBA 16.12.1987, 28.12.1987

- Verbringung ohne weitere gesonderte wasserwirtschaftliche Prüfung
- Auflagen
 - Überschusswassers < 10 % des Einsatzwassers
 - unterhalb von -800 m (keine nachteilige Veränderung des GW im Sinne von § 34 Abs. 2 WHG zu besorgen)
 - vierteljährliche Mengenbilanz (Art, Menge, Herkunft)
- Untersuchungsprogramm bei der Antragsstellung

Dokumentierter Ablauf eines Antrages BW Walsum

- Vorauslaufende Gespräche (nicht dokumentiert)
- Antrag Betriebsplanergänzung
 - Technische Beschreibung (RAG)
 - Untersuchungsbericht (HGI): Substanzanalyse, Verhalten gegenüber Säuren, Basen und Wasser, Auslaugungsversuche, Arbeitsschutz
 - Gutachtliche Beurteilung (Uni Bonn)
 - Bergbauhygienische Prüfung (HGI)
- Bitte um 8 Stellungnahmen bei 8 Stellen(LUA, GLA, BR Düsseldorf, Kreise und Städte)
- Zulassung zur immissionsneutralen Verbringung mit Nebenbestimmungen
- Oder: Verbringung im vollständigen Einschluss
- Prüfungsdauer eines Antrages: ca. 9 Monate

Dokumentation der Mengen (Landtagsbericht 2013)

Bezirksregierung Arnsberg

Verwertung bergbaufremder Reststoffe im Steinkohlenbergbau unter Tage

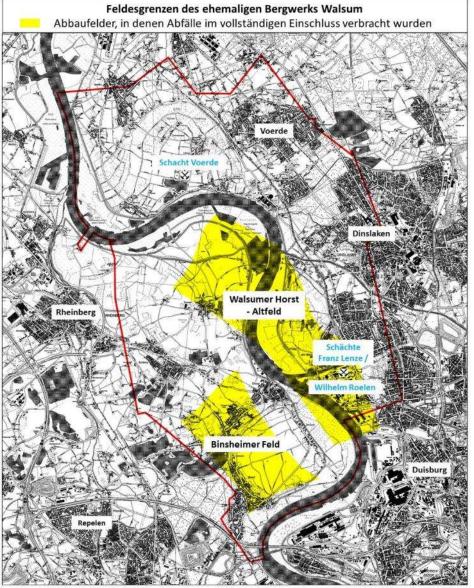
einschließlich vollständiger Einschluss (Mengen in Tonnen)

				- T					3.75				1980					
Schachtanlagen	1989	1990	1991	1992	1993	1994	1995	1996	Jahre 1997	1998	1999	2000	2001	2002	2003	2004	2005	Summe
Monopol	150	9.600																9.750
Haus Aden	39.826	18.098																57.924
Haus Aden/ Monopol			16.694	11.350	34.495	42.416	43.958	21.794	38.684	3.268								212.659
Emil Mayrisch		12.611	15.587															28.198
Walsum			1.444	5.638	8.466	30.126	39.296	61.433	47,801	69.104	62.747	60.810	34.466	3.766	11.453	791		437.341
Hugo/ Consolidation	17.200	83.904	95.778	90.894	53.982	40.825	20.772	56.448		17.425								477.228
Ewald/Schlägel & Eisen				5.038	15.574	3.500	18.021	3.380	99,891									145.404
Friedrich Heinrich						8.630	12.215											20.845
Fürst Leopold/ Wulfen						5.191	6.939	9.123		18.023								39.276
Auguste Viktoria								1.096		5.299								6.395
Blumenthal Haard							6.812											6.812
Lippe											45.268	47.327	13.817				36.171	142.583
Lahberg/ Osterfeld																	50,754	50.754
Summe	57.176	124.213	129.503	112.920	112.517	130.688	148.013	153.274	186.376	113.119	108.015	108.137	48.283	3.766	11.453	791	86.925	1.635.169

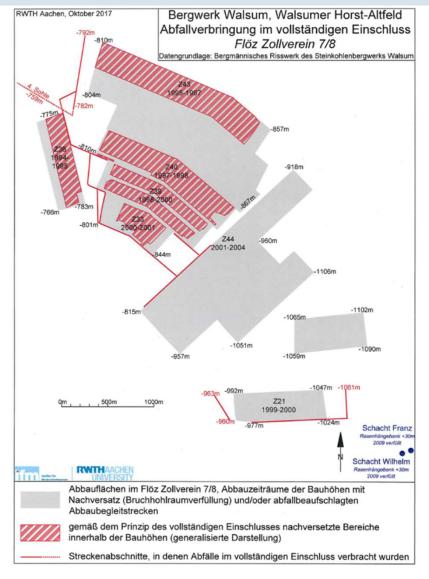
14 Versatz mit Reststoffen 13.09.2013

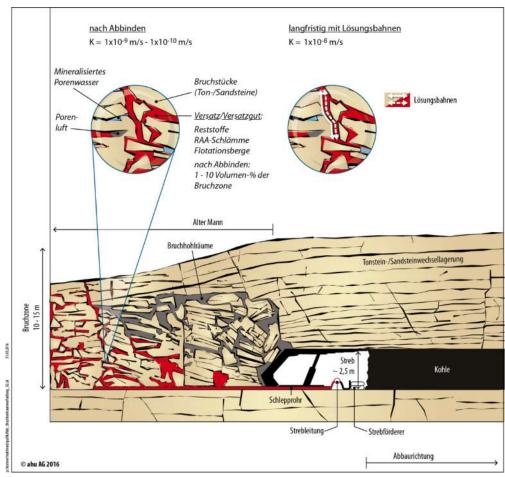
Risiko Immissionsneutrale Verbringung

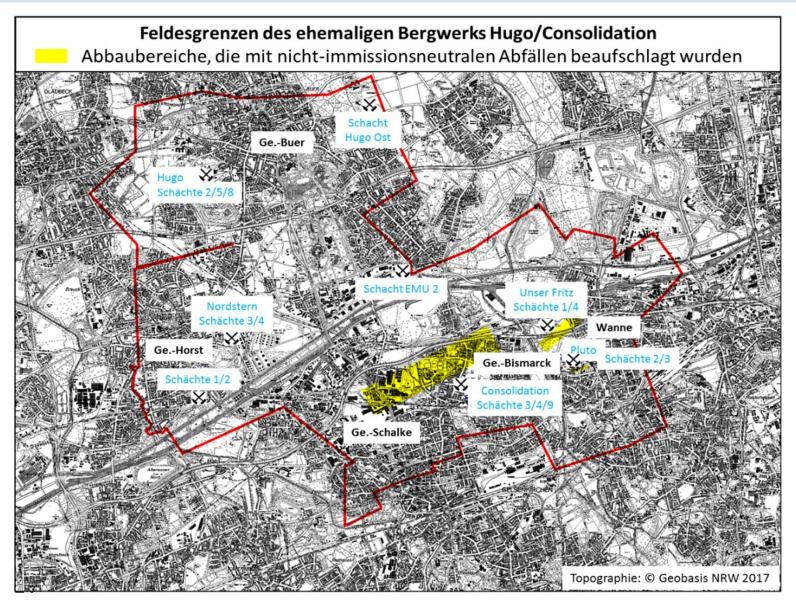
- Verbrachte Mengen sind dokumentiert
- Die Grundannahme ist schlüssig
 - Kein Anstieg des Grubenwassers bis ins Deckgebirge
 - Barriere "tiefenabhängige Schichtung" nicht aktiv
- Keine Hinweise auf Stoffeinträge aus der immissionsneutralen Verbringung im Monitoring BW Emil Mayrisch

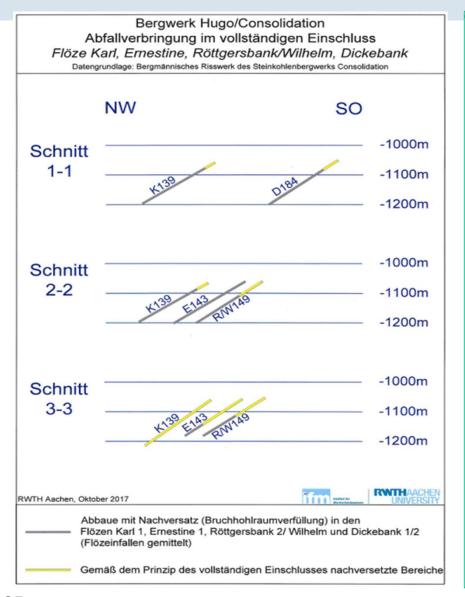

Kein zusätzliches Risiko für Stoffeinträge in das hochmineralisierte Grubenwasser

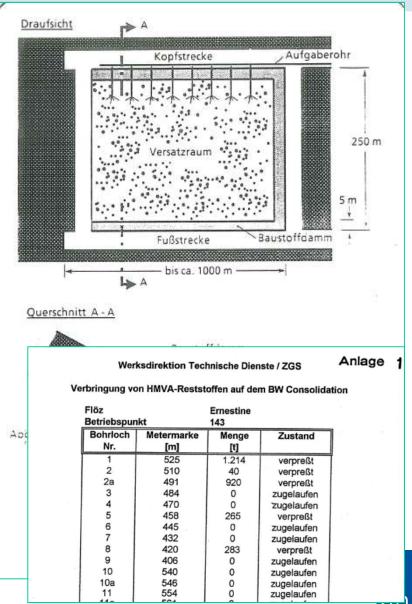
 Risikoanalyse <u>vollständiger</u>
 <u>Einschluss</u> BW Walsum BW Hugo/Consol

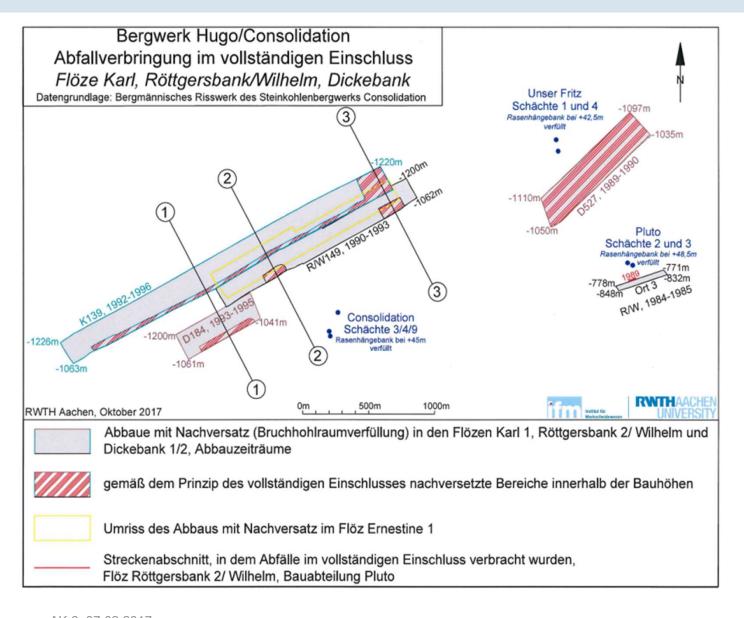



BW Walsum


BW Walsum: Walsumer Horst-Altfeld




BW Hugo/Consol



BW Hugo/Consol

BW Hugo/Consol

Gefährdungspotentiale BHV

Fazit Recherche (Detailbericht 3)

- Abschlussberichte für BW Walsum und Hugo/Consol nicht mehr vollständig vorhanden
- keine eindeutige Trennung zwischen Abfall- und Reststoffen, die nach dem Prinzip vollständiger Einschluss bzw. nach dem Prinzip Immissionsneutralität eingebracht wurden
- Bilanz der BR Arnsberg auf Grundlage des <u>übergeordneten</u>
 <u>Berichtswesens der Bergämter und LOBA (Landtagsbericht)</u>

Dokumentation BR Arnsberg (Landtagsbericht 2013)

Verwertung besonders überwachungsbedürftiger Abfälle im vollständigen Einschluss

	Jahre													Summe			
Schachtanlagen	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	
Haus Aden/ Monopol					1.587	16.120	18.845	9.963	28.392	693							75.600
Walsum					4.391	28.540	39.296	61.433	47.468	54.136	40.768	39.241	23.781	3.766	11.453	791	355.064
Hugo/ Consolidation	1.176	21.553	21.675	19.233	19.442	22.108	7.355	34.765				,					147.307
Summe	1.176	21.553	21.675	19.233	25.420	66.768	65 406	106.161	75.860	54.829	40.768	39,241	23.781	3.766	11.453	791	577.971

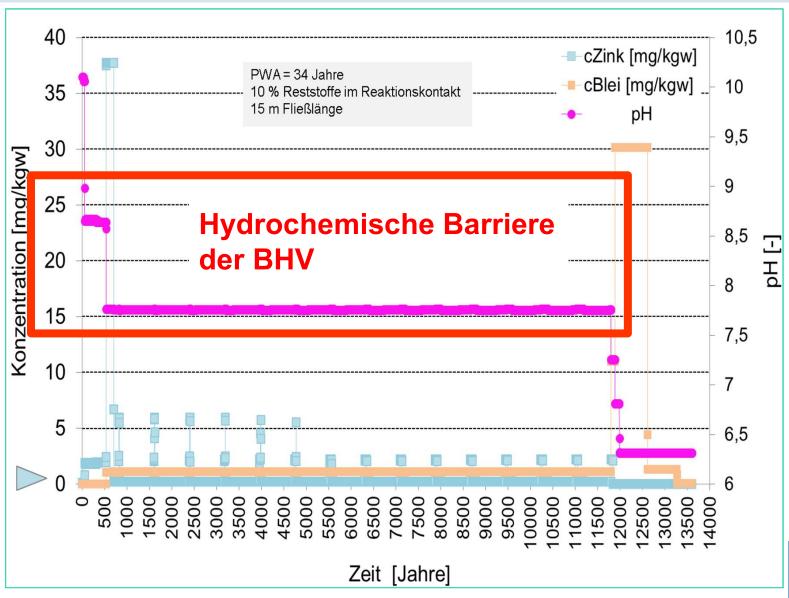
Bericht der Landesregierung vom 17.09.2013 (Vorlage 16/1150), Seite 11

Gefährdungspotentiale alle BW

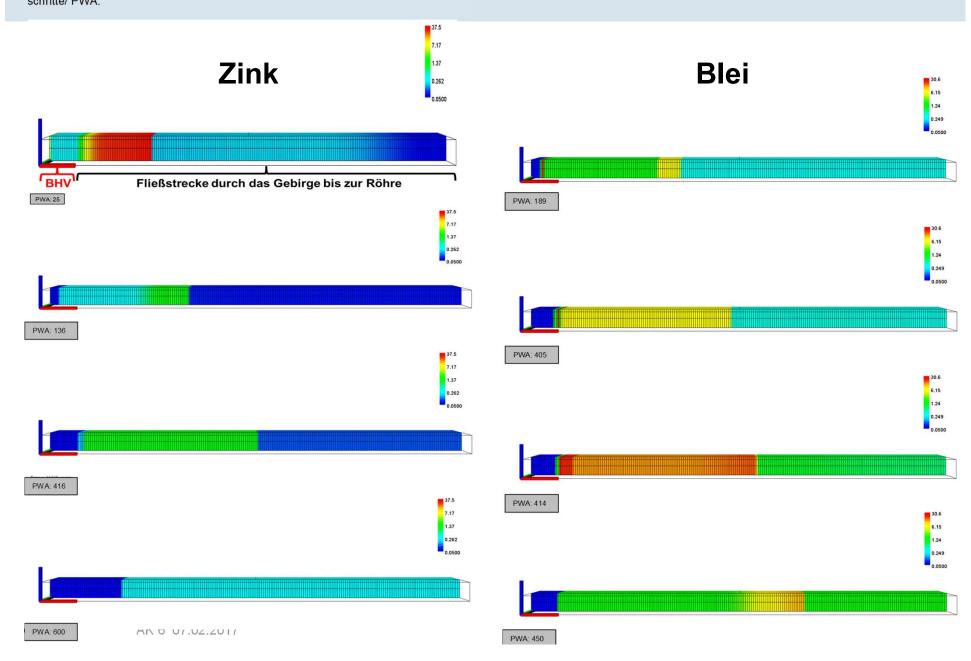
	Haus	Aden	Hugo/	Consol	Walsum		
Gesamt		t 62.289		t 147.307		t 355.064	
Zink Blei Cadmium		1.321 403 19		1.488 560 40		4.864 1.527 89	
PCDD/F		7 kg		34 kg		14 kg	
"Seveso Dioxin" Zahl BHV-		122 g 5		573 g 7		238 g 9	
Bereiche							

Relevanz der Mengenerfassung für das Risiko

- Je größer die Menge, desto größer das Gefährdungspotential, aber
 - Konzentration der <u>freigesetzten</u> Schwermetalle bleibt immer gleich
 - hydrochemische Barriere ist über mehrere 1.000 Jahre bereits bei 10 % der BHV in Lösungskontakt mit Tiefengrundwasser stabil
 - Bei höheren Anteilen in Lösungskontakt bleibt die hydrochemische Barriere mehrere 10.000 bis 100.000 Jahre stabil
- Bisher noch keine Berücksichtigung der Sorption
- Bisher noch keine Berücksichtigung des Fließsystems in der fernen Zukunft

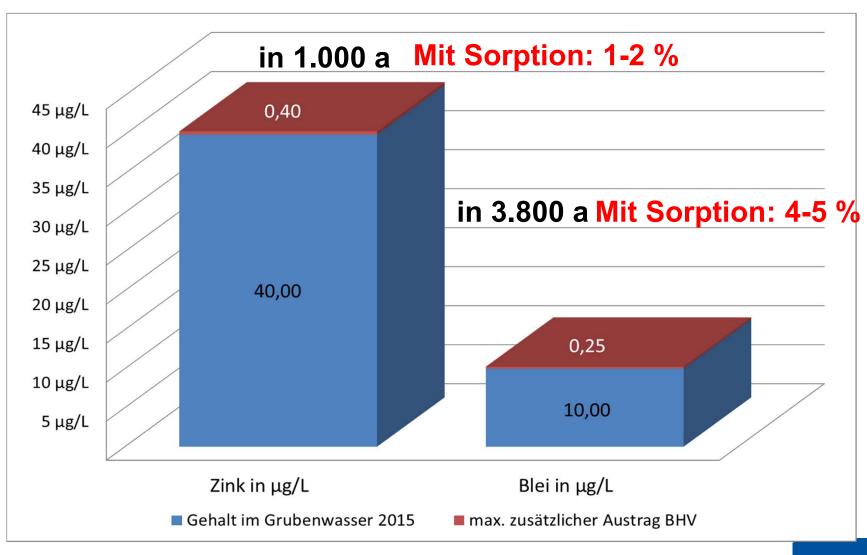


FreisetzungspotentialSchwermetalle



Standardszenario Freisetzung aus der BHV

Sorption: Fließweg BHV - Röhrensystem

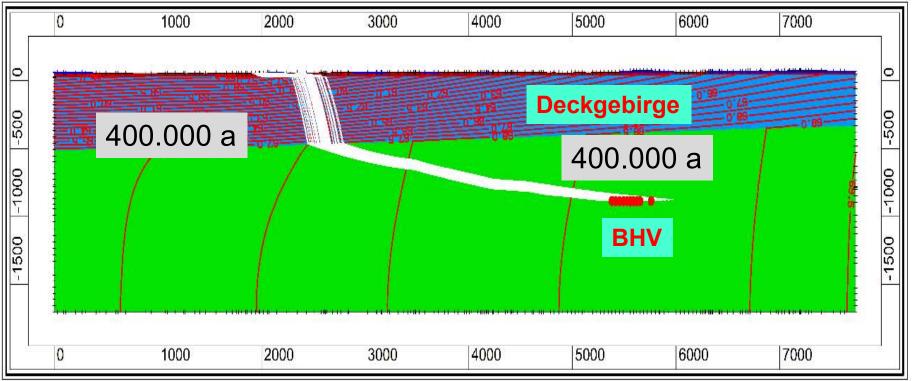

Ergebnisse Freisetzungspotential

- Keine Roll-Front Prozesse
- ZINK: Verringerung auf 1 2 % der Freisetzungskonzentration
- BLEI: Verringerung auf 4 5 % der Freisetzungskonzentration
- Konzentrationszunahmen im Gestein gemessen an geogenen Gehalten – ist vernachlässigbar

Die Risikoabschätzung in Teil 1 ist bereits sehr konservativ und auf der sicheren Seite

Maximale Konzentrationserhöhung in der ZWH, Teil 1

Ausbreitungspotential



Ferne Zukunft

- keine ZWH mehr
- kein Röhrensystem mehr
- Worst case Annahme: Aufsteigende Wasserbewegung aus dem Karbon bis ins Quartär

Ausbreitung bei aufsteigende Wasserbewegung

EMPRING, 3D MODELL VERTIKALSCHNIZZ Auswertung GRONBUNACH 5 ITERATIONEN

Fazit Risikoanalyse BHV, Teil 2

- Ein Risiko für Oberflächengewässer und Grundwasser ist
 - bezogen auf heutige Bewertungsmaßstäbe –
 weiterhin nicht erkennbar (Aussage Teil 1 und Teil 2)
- Alle Szenarien im Teil 2 zeigen, dass die Risikoeinschätzung in Teil 1 eindeutig auf der sicheren Seite liegt
 - Sorption
 - Aufstieg Tiefengrundwasser in 800.000 a (bei aufsteigenden Potential)
- Kein Handlungsbedarf zur Vermeidung / Verringerung von Risiken

PCB

Inhalte

- Recherchen
 - Altölentsorgung ab 1984
 - Recherche Grubenrisse / potentielle Punktquellen
- 100 L Wasserproben (2x Haus Aden, 2 x Zollverein)
- Aktualisierung Risikoanalyse PCB

Recherchen RisikopotentialePCB

Wesentliche potentielle PCB-Punktquellen (Teil 1)

- Maschineneinsatz beim Abbau (Alter Mann)
- 2. Lokschuppen, Werkstätten, Ölsammelstellen, Lager
- 3. Schlämme in Sumpfstrecken + Schachtsümpfe
- 4. Installationskammer für Vollschnittmaschinen
- 5. Mobile Ölsammelstellen

- Unfall (bislang nur 1 Unfall BW West dokumentiert)
- Zurückgelassene Maschinen (wurden entleert: §3 AltölV / SBP von 11.01.1995 Akt. H10-4.3-38-9)

Recherche potentielle Punktquellen

Durchführung IFM (Prof. Preuße, RWTH Aachen)

- Infrastruktureinrichtungen (wie Lokschuppen, Werkstätten mit Tanklagern, Fasslagern, Ölsammelstellen)
- Pumpensümpfe / Sumpfstrecken
- Umgelagerte Schlämme aus Pumpensümpfen/ Sumpfstrecken

Recherche potentielle Punktquellen

Sichtung und Auswertung von 1236 Grubenrissen

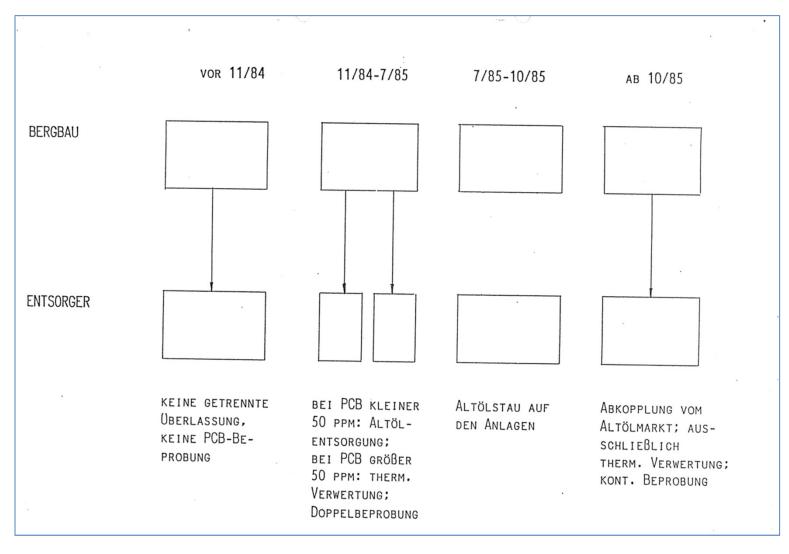
Bergwerk	Fundstellen	Risse	Rissblätter	Gewinnungsrissblätter (stichprobenartig)
Haus Aden	5	16	123	20
Haus Aden Monopol	7	24	123	
Grimberg 1/2	3	15	173	
Grimberg 3/4	4	4	38	
Hansa	6	17	205	34
Grillo	5	22	252	
Heinrich Robert	2	30	322	
Ergebnis	32	128	1236	54

32 potentielle Punktquellen identifiziert:

- Sumpfstrecken
- Trafos
- Werkstätten/Lokschuppen

Potentielle Punktquellen

- Sumpfstrecken: Aktuelle Beprobung ergibt keine oder unterdurchschnittliche Belastung
- **Trafos**: 7.042 Trafos und 30.736 Kondensatoren wurden zwischen 1983-1984 erfasst und geordnet entsorgt
- Werkstätten/Lokschuppen: Aktuelle Beprobung nicht möglich



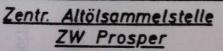
Oberirdische Altölentsorgung

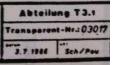
Entsorgungswege

(Quelle RAG, 1980er Jahre)

Historie der Zentralen Altölsammelstellen

- 1985 7/1987 Zentrallager Friedrich Thyssen 2/5
- Ab 1986: ZW Fürst Hardenberg
- Ab 10/1987: zentrale Altölsammelstelle ZW Prosper
- Ab 1997 zentrale Altölaufbereitung Auguste Victoria
- Stilllegung 12/2015


Bilanz ZW Prosper für das Jahr 1986


Geschätzte Rückflußmengen aufgebrauchter Betriebsflüssigkeiten in der RAG

Summe aus Bergwerken, Kokereien, Werkstätten, Zu.H und Fuhrpark)

4.0	BAL t/a	BAN t/a	BAW t/a	RAG t/a
Mineralöl	550	225	500	1.275
HFD	40	20	5	65
HFC .	110	90		200
HFA (Emulsion)	360	10	70	440
Waschwasser	660	80	25	765
Farbspritzwasser	120	5		125
Mischflüssigkeiten	-	560		560
Summe	1.840	990	600	3.430

Fazit

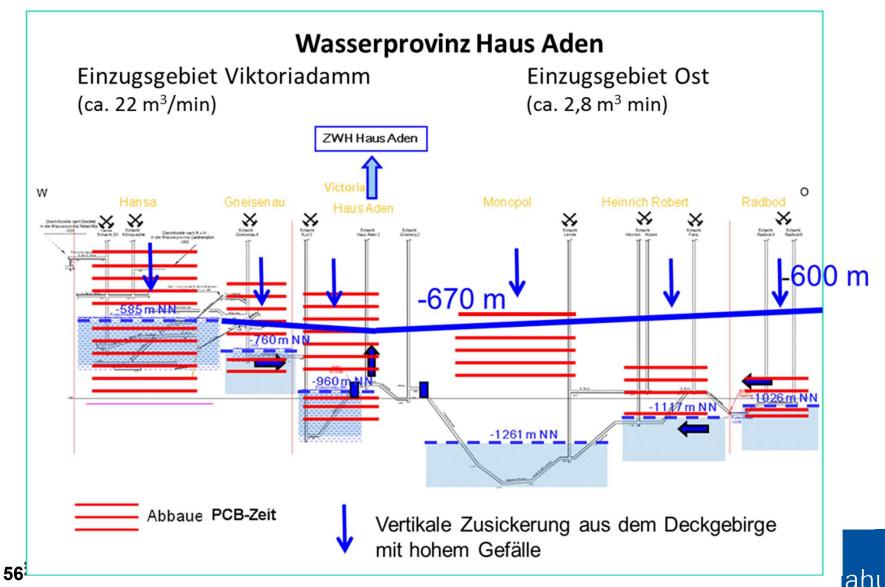
- Nach Aktenlage war der Entsorgungsweg der PCB-haltigen Altöle ab 1984 umfassend geregelt
- Es gibt nach der Aktenlage keine Hinweise auf Abweichung bzw. eine illegale Altölentsorgung
- Strafverfahren Untertageverbringung "gefüllter Fässer" ergebnislos eingestellt (Staatsanwaltschaft Bochum 19.08.92, 41 JS 144/88)

100 L Wasserproben PCB

Ziele 100 L Wasserprobe

- Aufklärung grundsätzlicher Wirkungszusammenhänge:
 - Gleichgewichtseinstellung gelöst partikulär gebunden
 - Verhalten gelöster Anteil Probenaufbereitung / Filtration
 - Einfluss unterschiedlicher Grubenwässern (u.a. Gehalte an Schwefelverbindungen, Eisen, Barium, Natriumchlorid)
 - Gelöster Anteils bei unterschiedlichen Einzugsgebieten
- Überprüfung der Ergebnisse aus Teil 1

Keine Standard Monitoring Methode!!

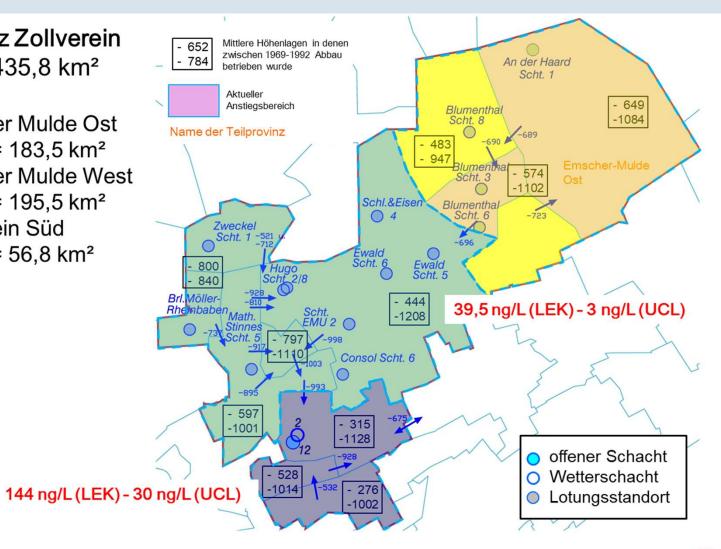


Monitoring Grubenwassereinleitungen (LANUV)

- Bericht 5. AK PCB vom 07.09.2017 (auf der homepage)
- Sonderaufgabe des LANUV
- Zentrifugen wenig geeignet
 - Erhebliche Technische Schwierigkeiten
 - Punktuelle Beprobung
- Erprobungsphase Sedimentkästen
 - Langzeitüberwachung
 - Korngrößenanalysen zeigen, dass mit den Schwebkästen auch die relevanten Kornfraktionen aufgefangen werden
 - Insgesamt positive Ergebnisse
 - Problem: wenig Schweb in nicht aktiven BW

Wasserprovinz Haus Aden: 2 x 100L Probe (Probe A + B)

07.02.2018


AK 6 07.02.2017

2 Einzugsgebiete Wasserprovinz Zollverein: 2 100L Proben

3

Wasserprovinz Zollverein Fläche = 435,8 km²

- EZG Emscher Mulde Ost
- _____Fläche = 183,5 km²
- EZG Emscher Mulde West
 - ____Fläche = 195,5 km²
- EZG Zollverein Süd
 - Fläche = 56,8 km²

EZG = Einzugsgebiet

22.12.20

Übersicht über die Ergebnisse in ng/L

Datum	18.02.16	30.0	8.17	13/14	.11.17	13/14	1.11.17
EZG	Viktoriadamm Haus Aden A Haus Aden B			ZV Süd Zollvereinsleitung		ZV Emscher Muld Stinnensleitung	
Gefälle im EZG	720m			664m		516	
Förderung m³/min	22 r	ca. 1995 m³/min ′ je km²		Seit 1998 8 m³/min 0,14 je km²		Seit 2010 5,3 m3/min 0,03 je km²	
Aufbereitung	UCL Labor	Vor - Ort			- Filtration		
Labor	LEK	LEK	UCL	LEK	UCL	LEK	UCL
PCB-28	0,17	2,39	1,59	9,8	1,8	1,07	<0,1
PCB-52	0,14	2,50	2,43	18,2	4,2	5,87	0,61
PCB-101	0,005	0,38	<0,1	0,7	<0,1	0,81	<0,1
PCB-138	0,004	0,37	<0,1	0,06	<0,1	0,08	<0,1
PCB-153	0,006	0,34	<0,1	0,09	<0,1	0,07	<0,1
PCB-180	<0,004	0,43	<0,1	< BG*	<0,1	< BG*	<0,1
S 6 DIN- Kongenere * 5	1,6	32	20	144	30	40	3

Filterrückstände µg/kg (*5) 980 Sedimentkasten (27.07-25.10.17, *5) 5.750 20.975 1.100

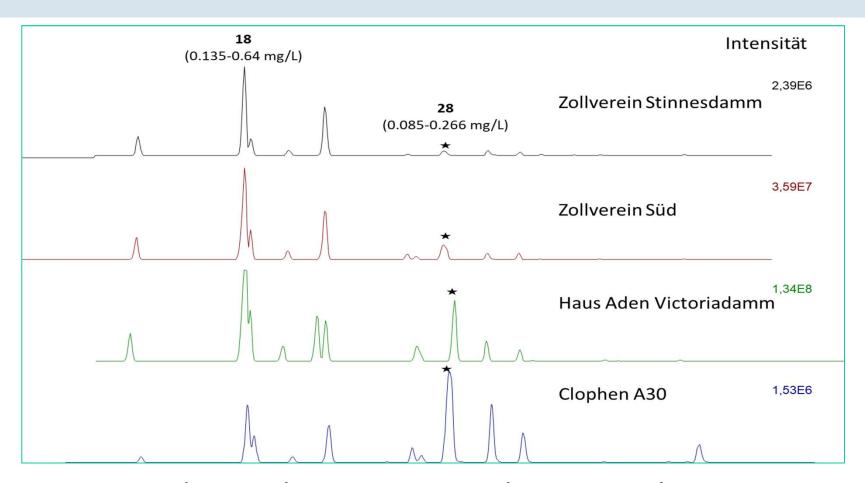
189

58

Ergebnisse der 100L Proben

- Übereinstimmung bei Haus Aden B
- ZV Süd und Emschermulde West: größere Unterschiede LEK / UCL
 - typische Unterschiede bei der Ultraspurenanalytik
 - Forschungslabor des LEK / akkreditiertes Labor (UCL)
 - Dennoch: grundsätzliche Übereinstimmung
- Höhere Konzentration EZG Süd (ZV-Leitung) gesichertes Ergebnis
 - Gelöste Gehalte und Analyse der Filterrückstände stimmen überein (Kd-Werte)

Ursachen erhöhter PCB - Gehalte ZV-Süd


- Für dauerhaft erhöhte Gehalte gibt es kein Erklärungsmodell
- Langzeitmonitoring LANUV
 - keine auffallend höheren Gehalte in ZV (27.07 25.10.17: 188,5 μg/kg)
 - Kästen an ZV waren wegen Defekt nicht in Betrieb während der 100L Probe
- Mögliche singuläre Ereignisse
 - Hoher Zufluss aus dem Deckgebirge: Bei Starkregen, Wassereinbrüchen etc. erhöhte Erosion und singulär höhere PCB-Fracht
 - Singuläre Ereignisse mit Schwebfreisetzung: herabfallende Steine + Grubenausbaue, Bewegungen in den Grubenbauen, etc.

Vergleich Verteilungskoeffizienten und gemessene Verhältnis gelöster zu partikel-assoziierten PCB

Kongener	K _d -Wert Literatur	Verteilungskoeffizient (K _d , experimentell)		Verteilung (gemessen in 100 L Grubenwasserproben)				
		Förderricht strecke, kohlehaltig	Pumpen- sumpf	Victoria- damm	ZV Süd	EM West		
PCB-28		2,5x10 ⁶	2,4x10 ⁴	6,6x10 ⁵	2,8x10 ⁵ (1,5x10 ⁶)	1,0x10 ⁵		
PCB-52	5,2x10 ⁴	1,2x10 ⁶	1,8x10 ⁴	4,5x10 ⁵	7,7x10 ⁴ (3,3x10 ⁵)	1,9x10 ⁴		
PCB-101	8,8x10 ⁴	3,1x10 ⁶	5,8x10 ⁴	4,9x10 ⁶	1,3x10 ⁵			
PCB-118		5,3x10 ⁶	1,2x10 ⁵	2,3x10 ⁶				
PCB-138		7,6x10 ⁶	2,3x10 ⁵	<4,3x10 ⁶				
PCB-153		6,3x10 ⁶	2,2x10 ⁵	<2,9x10 ⁶				
PCB-180	8,6x10 ⁵	1,2x10 ⁷	7,9x10 ⁵	<4,3x10 ⁶				

Faktor 5 (bei gelösten PCB)

- Veränderung der Ionenspur in der Wasserphase
- Über- und Unterschätzung durch den Faktor 5
- Vorschlag: Angabe der Gesamtfläche der Ionenspuren

Ergebnisse der 100L Proben

- Berechnete, experimentelle und Literatur-Kd-Werte (Verhältnis der Konzentrationen im Feststoff und gelöst) stimmen überein
- Zukünftig auch Abschätzung der gelösten Gehalte auf Grund der partikulären Konzentrationen möglich
- Unterschiedliche Ergebnisse durch unterschiedliche Probenbehandlung (Filtration vor Ort <u>oder</u> im Labor)
 - Anreicherung PCB durch Filtration?
 - Erhöhter Rückhalt von Feinmaterial bei Filterung?
 - 55
- Angabe Faktor 5 bei gelösten PCB nicht sinnvoll

Fazit und Empfehlungen

- Fortsetzung Regelüberwachung mit Schwebstoffkästen (LANUV)
- 100L Wasserproben
 - Zeigt Gleichgewichtseinstellung gelöste und partikulär-gebundene PCB
 - Zu aufwändig für eine Regelüberwachung
 - Weitere 100L Proben nicht erforderlich
- Gesamtfracht (gelöst / partikulär) im Grubenwasser entscheidend
- Empfehlung für einheitliche, kontinuierliche, vergleichbare Analysen
 - Gesamtextraktion **ohne Filtration** aus 10L-Probe
 - Ermöglicht Abschätzung des gelösten Anteils (Kd-Wert)
 - Begleitung Regelüberwachung zur Klärung singulärer Ereignisse
 - Begleitung Pilotversuche
 - Dokumentation Ionenspuren

Aktualisierung RisikoanalysePCB

Überprüfung Hypothesen zur Auswirkungen höherer Grubenwasserstände auf den PCB Austrag

1. Verringerung Erosion / Entstehung von Schweb

Bestätigung Kaskadenmodell in Auguste Victoria,
 Zollverein, Walsum

2. Reduzierung der Grubenwassermenge

- Schemabild
- Überprüfung Boxmodell in Auguste Victoria

3. Flächen außerhalb der PCB-Zeit wirken als (Kohle) - Flächenfilter

 Flächenbilanzierung in Auguste Victoria (Zwischenbericht),
 Walsum und Hugo / Consol (in Vorbereitung)

Zeitplan und weiteres Vorgehen

- Fertigstellung Zwischenbericht Ende Februar
- Endbericht Entwurf: März / April
- AK 7: Mai /Juni
- Fertigstellung Juli /August

Vielen Dank für Ihre Aufmerksamkeit!!

