# "Prüfung möglicher Umweltauswirkungen des Einsatzes von Abfall- und Reststoffen zur Bruch-Hohlraumverfüllung in Steinkohlenbergwerken in NRW"

2. Sitzung des begleitenden Arbeitskreises

**10. Dezember 2015** 

#### **Tagesordnung (Hauptpunkte)**

TOP 1: Begrüßung, Tagesordnung, Protokoll AK1

**TOP 2:** Projektstand

**TOP 3:** Mögliche tagnahe Beeinflussungen

**TOP 4:** Bruchhohlraumverfüllung

TOP 5: PCB

**TOP 6:** Stand der Datenerhebung

**TOP 7:** Verschiedenes, Termine

#### TOP 2

# Projektstand

#### Kernfragen an das Gutachten

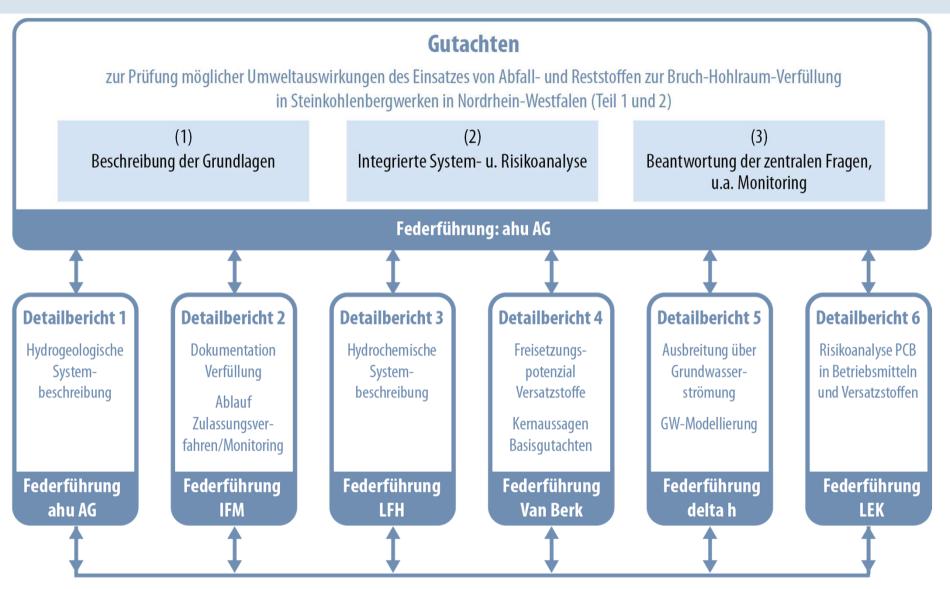

- 1. Wie sind die <u>Grundannahmen</u>, die damals Basis der Entscheidungen gewesen waren, heute zu bewerten?
- 2. Sind aktuell und künftig <u>Gefährdungen</u>, insbesondere des Grund- und Oberflächenwassers im Einzugsbereich der Steinkohlenbergwerke zu befürchten? Welche Maßnahmen müssten ggf. ergriffen werden, um diesen zu begegnen?
- 3. Wie muss das <u>Monitoring</u> erweitert werden, um ggf. auftretende Gefährdungen frühzeitig zu erkennen?

#### Weitere Fragen an das Gutachten

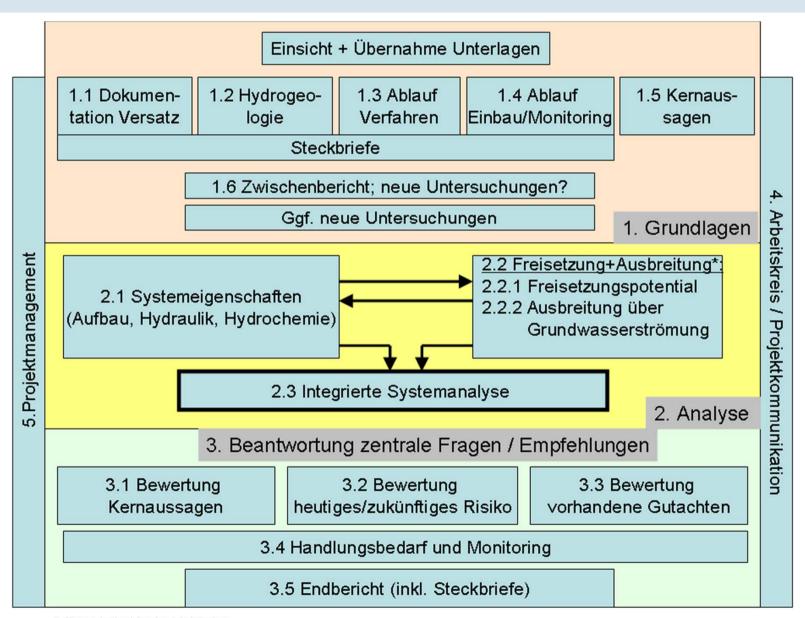
- 4. Gibt es zusätzlichen Untersuchungsbedarf?
- 5. Prüfung von Auffälligkeiten an der Tagesoberfläche (Bewertung vorhandene Gutachten)
- 6. Welches Risiko geht von PCB und den Substituten aus? (Aufgabenerweiterung 23.01.2015)
  - Mobilisierbarkeit und mögliche Stofftransporte (Berücksichtigung Grubenwasserkonzept)
  - Einträge in tiefe und flache Grund- und Oberflächengewässer
  - Grundlage sind die vorliegenden Messprogrammen und ggf. weitere Untersuchungen
  - Ist eine Anpassung des Monitorings erforderlich?

#### Vorgehensweise Risikoabschätzung

#### Gibt es aktuell und künftig Gefährdungen (Risiko) durch die BW?

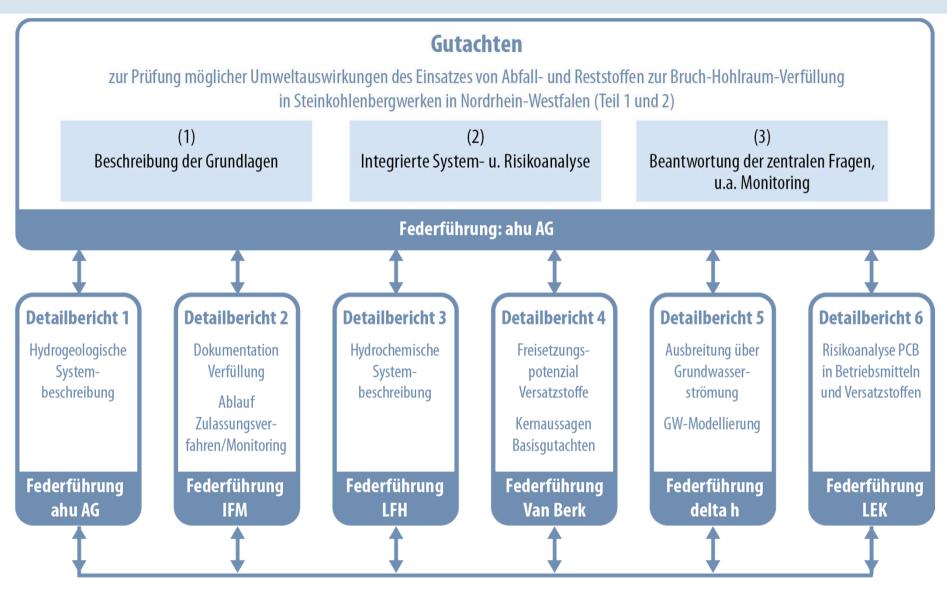



- 1. Welche gefährlichen Stoffe wurden in die Bergwerke eingebracht?
- 2. Werden diese Stoffe durch die verschiedenen Barrieren zurückgehalten?
- 3. Breiten sich die Stoffe (gelöst oder partikelgebunden) im Nahfeld (50-100 m) und im Fernfeld (> 100 m) aus?


#### Risikoabschätzung möglicher Umweltauswirkungen

#### **TOP 2: Projektstand**

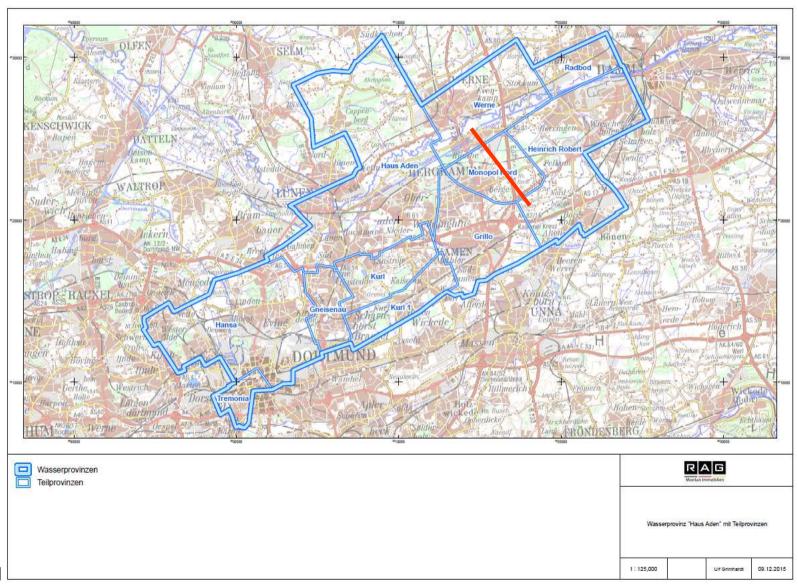
#### **Projektbearbeitung und Ergebnisse**



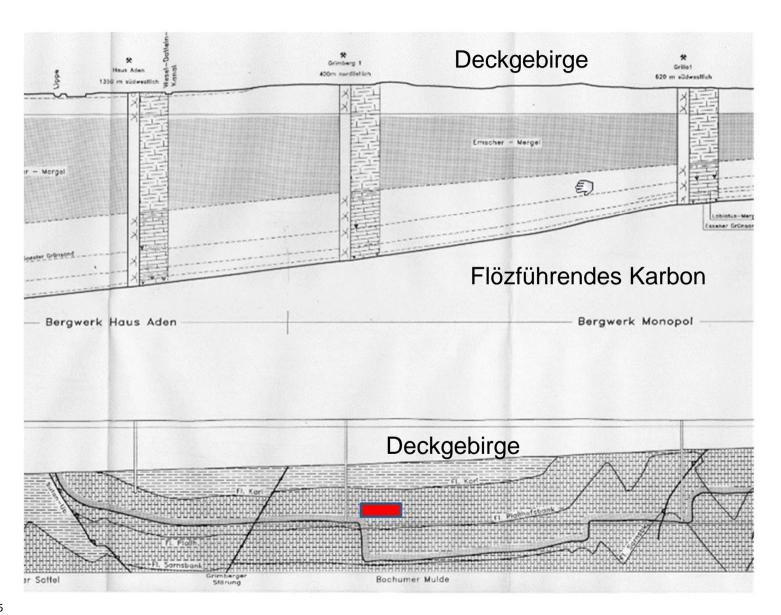

#### Kernpunkte des Grobkonzeptes (Teil 1, 13 Monate)



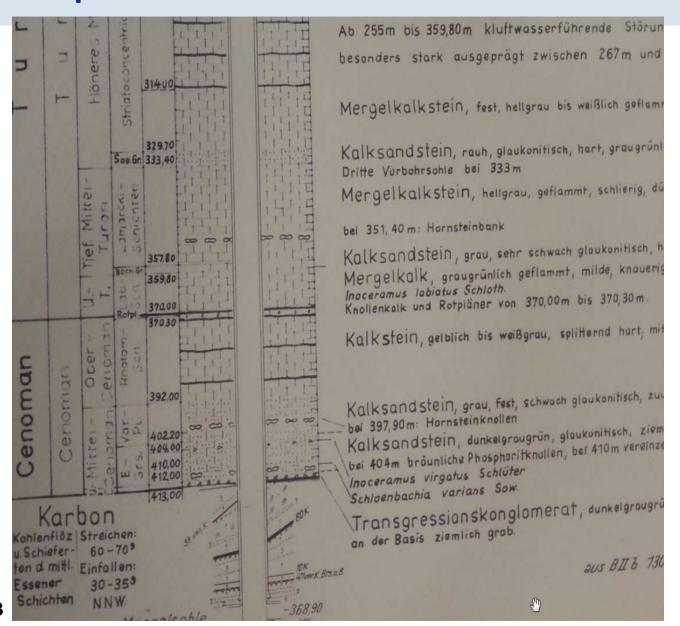
#### **TOP 2: Projektstand**


#### **Projektbearbeitung und Ergebnisse**

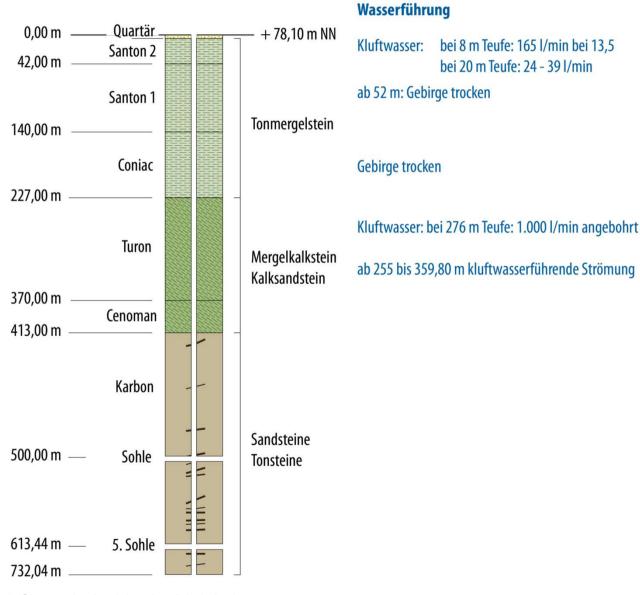



# Hydrogeologischehydrochemische Systembeschreibung

#### **TOP 2: Projektstand**


# Wasserprovinz Haus Aden – Untersuchungsgebiet (ahu AG)



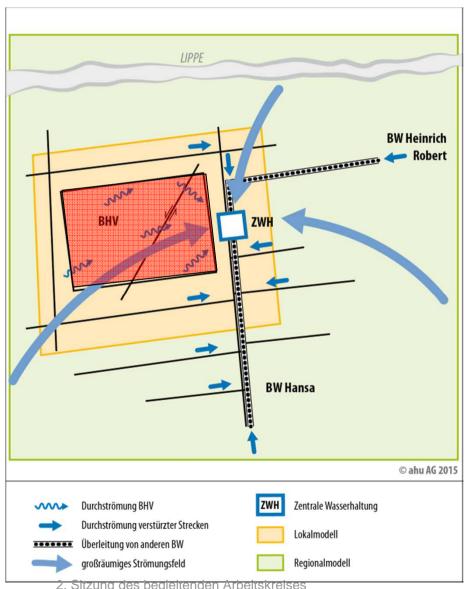

## **Hydrogeologischer Schnitt NNW - SSE**



# **Bohrprofil Schacht Grillo 4**

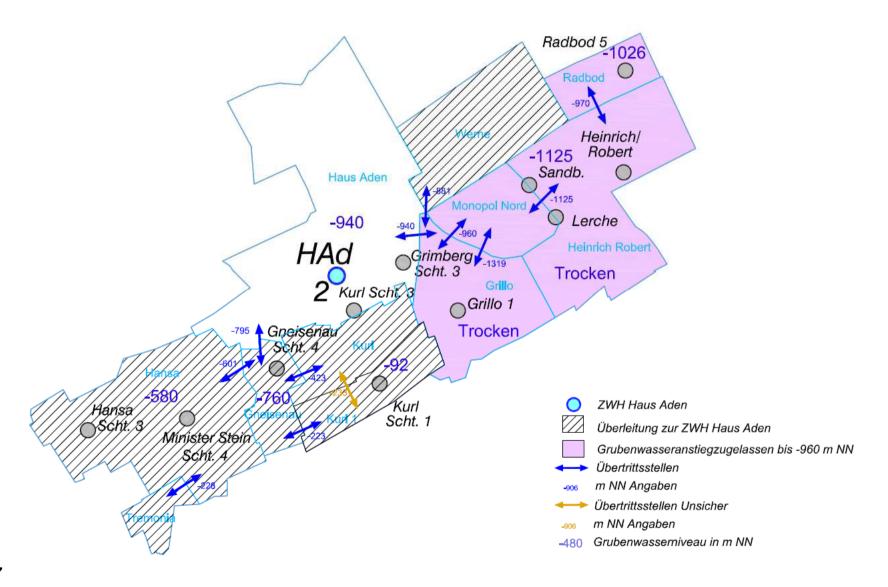


#### **Bohrprofil Schacht Grillo 4**




14

#### Hydrogeologische Einheiten - Systemaufbau


- 1. Unverritztes Gebirge: Tonsteinen und Sandsteine des Karbon mit einer Poren- und Kluftdurchlässigkeit
- Grubenbaue: verstürzt mit Auflockerungszone und Anschluss an eine oder mehrere verstürzte Strecken
- 3. Bruchhohlraumverfüllung: mit zeitlich variablem Chemismus und Durchlässigkeit durch Mineralneu- und umbildungen sowie Auflösungen.
- 4. Natürliche singuläre Wegsamkeiten: Größere Klüfte, Störungen
- 5. Künstliche singuläre Wegsamkeiten:
  - "Röhren": offene Strecken mit Anfangsquerschnitte von 14 24m², werden tw. durch Rohre (DN 300) offen gehalten.
  - Bohrungen, Schächte

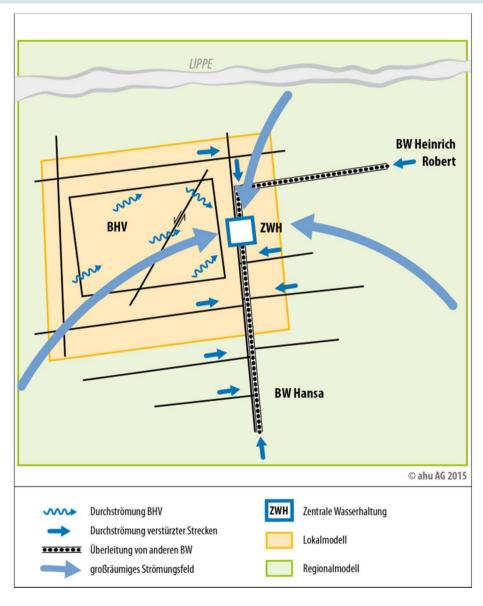
### **Hydrogeologisches System**



- 1. Unverritztes Gebirge
- 2. Grubenbaue
- 3. BHV
- 4. Wegsamkeiten
  - Röhren
  - **Klüfte**

#### **Grubenwassersystem, Stand 2015**




#### Weiteres Vorgehen hydrogeologische Systembeschreibung

- Ermittlung Systemparameter
- Übergabe und Abstimmung mit der GwStrömungsmodellierung (Prof. König)
  - Durchlässigkeit, Porenvolumen, Restwassersättigung
  - Grubenwasserführung
  - Kluftsysteme
  - Künstliche Wegsamkeiten (Bohrungen, Schächte, Röhren)

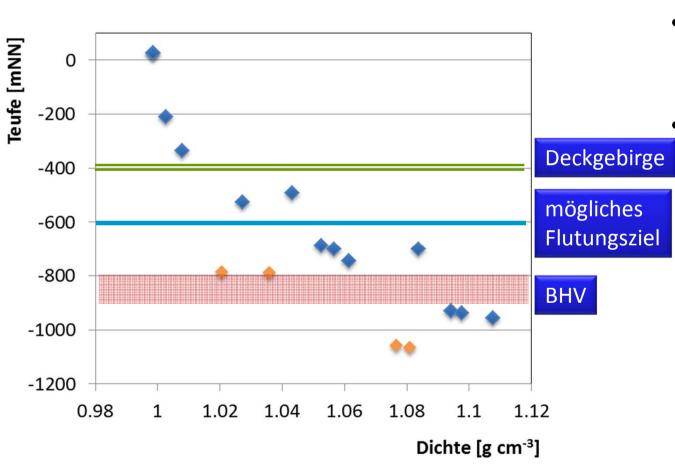
### **Hydrochemische Systembeschreibung**

# Prof. Rüde

#### Hydrogeologische-hydrochemische Systembeschreibung



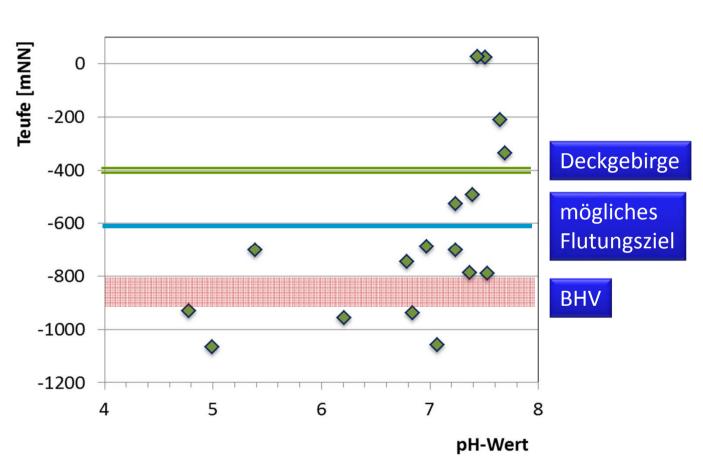
- 1. Hydrogeochemische Barrieren?
- 2. Übertritt in das unverritzte Gebirge
- 3. Zusetzendes Grundwasser


#### Hydrogeologische-hydrochemische Systembeschreibung

# **Quellen zur Grundwasserchemie**

Pilger (1960)
Michel (1964)
Puchelt (1964)
Klinger (1994)
Wedewardt (1995)
Coldewey (1976)

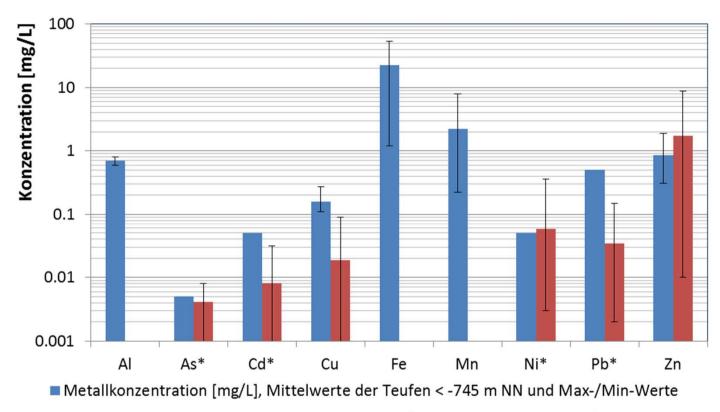
- Wedewardt (1995)
- eigene, umfangreiche Wasserbeprobung
- 190 Proben aus Tiefen bis zu -1470 m NN
- 14 Bergwerke bzw. Verbundbergwerke (Stand 1994)
   Anlagen der Wasserhaltung (14 beprobte Anlagen)
- Bohrungen in das tiefere Deckgebirge
   Teufen von -70 m NN bis zu -570 m NN
   Schöpfproben mit Schöpfbüchse oder Pumpen
- aufgelassene Bergwerkstollen
- Oberstes Ziel möglichst sichere Einstufung der Zuflußstellen
- Bevorzugt Wasseraustritte direkt aus dem Gebirge
- genaue stratigrapische Einordnung


#### Hydrochemie des zusetzenden Grundwassers



#### Haus Aden Wedewarth (1995)

- Dichtesprung zum Deckgebirge
  - hohe Dichte im Bereich BHV


#### Hydrochemie des zusetzenden Grundwassers

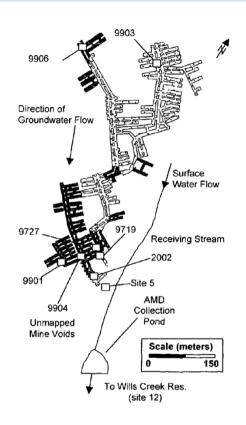


#### Haus Aden Wedewarth (1995)

- Alkalische Grundwässer
- saure Wässer im Nahfeld durch Sulfidoxidation
- In sauren
   Wässern:
   Ammonium,
   Eisen, Mangan,
   Kupfer, Sulfat,
   Zink erhöht
- Eigenschaft des belüfteten Grubengebäudes

#### Können Hintergrundwerte ermittelt werden?



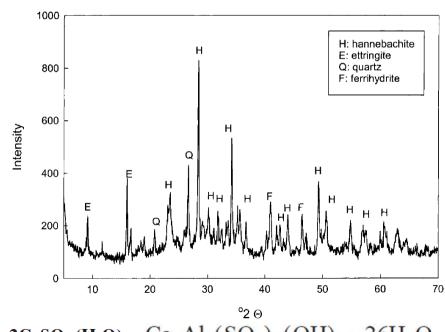

■ Metallkonzentration Grubenwässer aus Gb1 [mg/L], Mittelwerte und Max-/Min-Werte

#### Problem der hohen Nachweisgrenzen:

Säulen ohne Streuung = Nachweisgrenze

**Selektion aus Datensatz Grubenwasser:** Gb1 – (2) Bandstrecke ca. 20 m hinter Bohrloch, RVA Grillo 4 und (3) Abzweig südl. Basis Kopfstr. Gb3, Dieselraum RVA Grillo 4

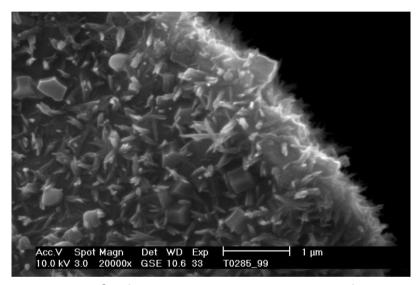
#### Welche Eigenschaften hat die BHV?



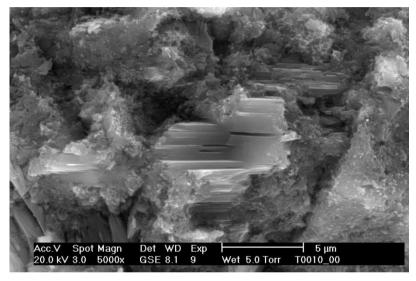

Lamminen M, Wood J, Walker H, Chin Y-P, He Y, and Samuel J. Traina S J - J. Environ. Qual. 30: 1371–1381 (2001).

Taerakul P, Lamminen M, He Y, Walker H W, Traina S J and Whitlatch E - J. Environ. Engineering 130: 816 (2004).

#### Ein Analogon: Steinkohle Tiefbau Ohio


Kerne nach 1-2 und 2-3 Jahren
Nach 1-2 Jahren noch nicht erstarrt
Indizien für Erhärtung
Nach 2-3 Jahren erhärtet
kein durchgreifender Säureangriff




**2CaSO<sub>3</sub>·(H<sub>2</sub>O)**  $Ca_6Al_2(SO_4)_3(OH)_{12} \cdot 26H_2O$ 

#### **TOP 2: Projektstand**

#### Erstarren und Erhärten von Zementstein



ESEM-Aufnahme von Zementstein nach 3 Stunden Hydratation (Erstarren). Sichtbar sind erste nadelige CSH-Primärkristallite und kurzstengelige prismatische Ettringitkristalle.



ESEM-Aufnahme von Zementstein nach **28 Tagen Hydratation (Erhärten)**. Sichtbar sind das dichte CSH-Gefüge und bankige Calciumhydroxidkristalle.

Zementtaschenbuch 50. Ausgabe; Hrsg. Verein deutscher Zementwerke e.V., Düsseldorf Verlag Bau +Technik, 2002

#### Freisetzungspotential (Prof. van Berk)

# Prof. van Berk

#### Analyse "Sicherheitsphilosophie" Basisgutachten

- Verbringung Reststoffe + REA-Abfälle (20-50% + H<sub>2</sub>O), mehrere 100 t Schwermetalle (v.a. Pb, Zn, Cd)
  - Hydratation, Mineralumwandlung, Mineralneubildung
- führt zu
  - pH-Wert Erhöhung ("innere geochemische Barriere" gegenüber SM-Freisetzung für mehrere 10.000 a)
  - Selbstabdichtung ("effektive hydraulische Barriere") durch Gebirgsdruck + Mineralneubildungen
- Grundlage: Elutions-Versuche in Säulen und Containern, REM,
   Mikroskopie, aber <u>keine</u> thermodynamische Betrachtungen und Analyse der Prozesse – keine Langfristbetrachtungen.

#### Identifizieren, Beschreibung und Bewertung der Prozesse

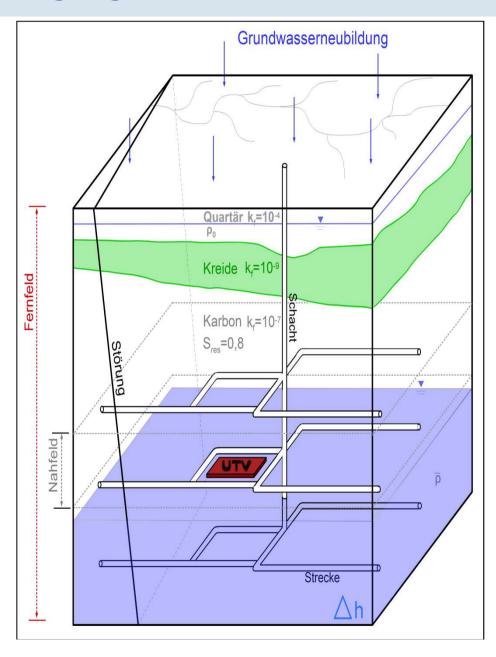
- "Abbinden"
- pH-Wert Veränderung
- Mineralneubildung
- Mineralumwandlung
- Mineralauflösung

Thermodynamische Gleichgewichtsmodellierungen (PHREEQC)

#### Untersuchungen zum Freisetzungspotential

- 1. Einzelne Feststoffphasen im RAG-Wasser
- 2. Gemisch Feststoffphasen im RAG-Wasser
- 3. Gemisch Feststoffphasen + sekundäre Bildungen
- Gemisch Feststoffphasen + sekundäre Bildungen + zunehmendes Wasser/Feststoffverhältnis
- 5. Gemisch Feststoffphasen + primäre/sekundäre Bleiphasen
- 6. Gemisch Feststoffphasen + Bleiphasen + Nebengesteine
- 7. 1D reaktiver Stofftransport mit RAG-Wasser
- 8. 1D reaktiver Stofftransport mit Haus Aden-Wasser
- Abgleich mit hydraulischen Randbedingungen (v.a. Fließrichtung, Fließmengen, Geschwindigkeiten)

### Ausbreitungspotential (Prof. König)


# Prof. König

1. Gefährdungspotential

2. Freisetzungspotential

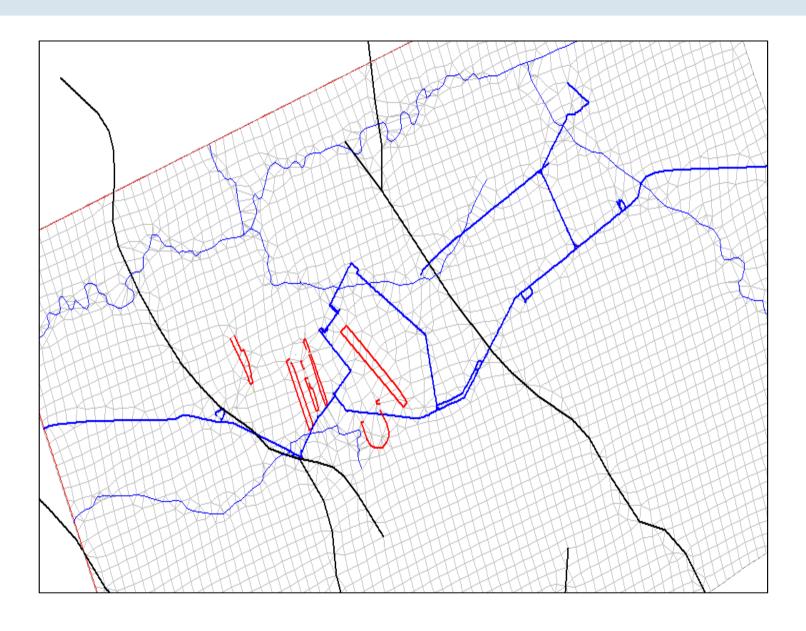
3. Ausbreitungspotential

# **Modellkonzept Ausgangssituation**



# Modellergebnisse

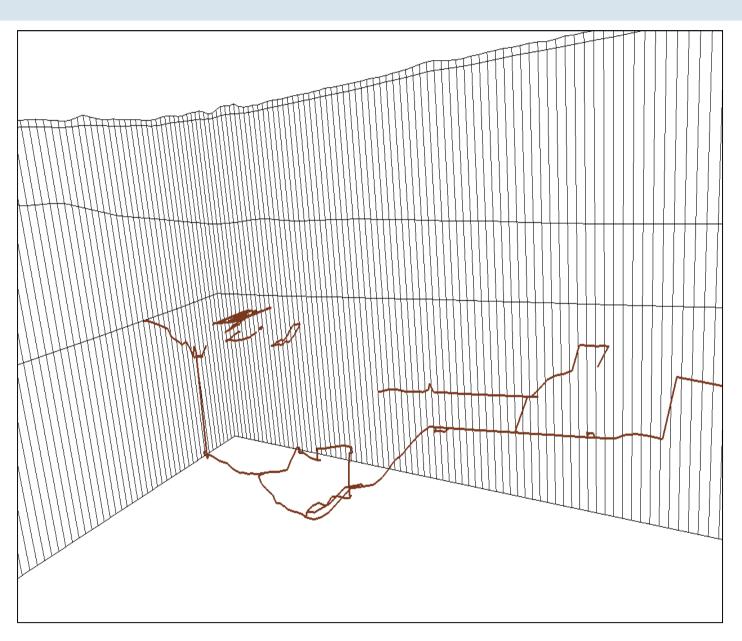
|          | Modell                                                            | Ergebnis                                                                                      | Verwendung                                                                                                         |
|----------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Fernfeld | 3D, Temperatur,<br>Dichteabhängig-<br>keit                        | Grundwasserpotentiale regional, ggf. Stoffverteilung advektiv                                 | Potential-RB für das<br>Nahfeld,<br>Stoffverteilung                                                                |
| Nahfeld  | 3D,<br>Kluftströmung,<br>abhängig von<br>Dichte und<br>Temperatur | Potentiale, Dichte,<br>Geschwindigkeit im<br>umliegenden Gebirge,<br>Stoffverteilung advektiv | Austausch Gebirge –<br>Grubengebäude:<br>Wassermengen,<br>Stoffmengen<br>Zeitraum pro<br>Porenwasser-<br>austausch |




# Eingangsdaten

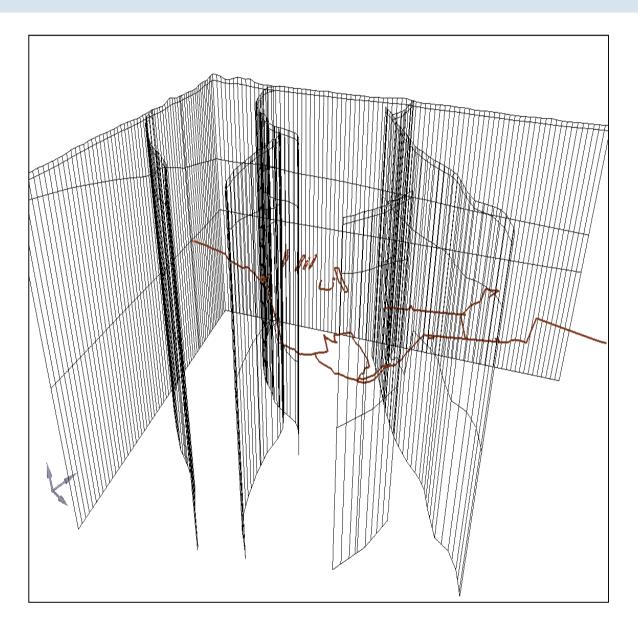
|          | Geometrie                                                                                                        | Materialparameter                                                | Randbedingungen, Anfangsbedingungen                                                                                   |
|----------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Fernfeld | Geländehöhen,<br>Grubengebäude Haus<br>Aden, Schichtgrenzen<br>Kreide/Karbon,<br>Oberflächengewässer,<br>Störung | Durchlässigkeiten,<br>Speicherkoeffizienten,<br>Dichteschichtung | Untertägige<br>Wasserscheide,<br>Potentialverteilung vor<br>Flutung                                                   |
| Nahfeld  | Geometrie BW Haus<br>Aden, Wasserhaltung,<br>Schichtung Sandstein,<br>Tonschiefer, UTV                           | Durchlässigkeiten,<br>Speicherkoeffizienten,<br>RAG-Wasser       | Potentiale im Grubengebäude (aus Boxmodell) vor und während der Flutung, Potentiale im Gebirge aus Fernfeldsimulation |

**TOP 2: Projektstand** 


## **Strukturmodell Aufsicht**

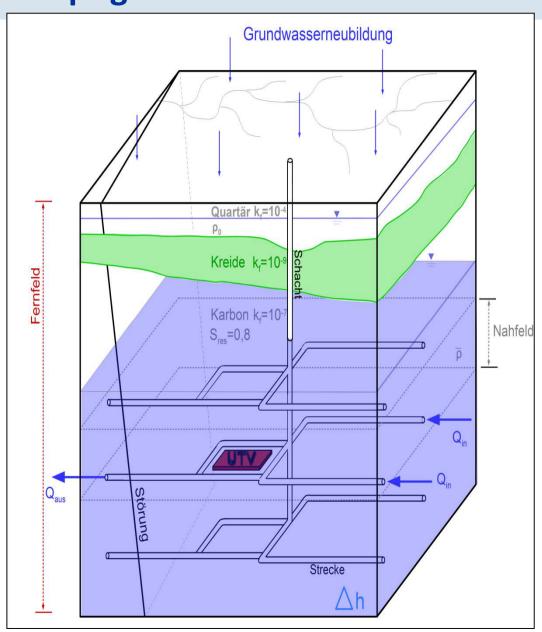





**TOP 2: Projektstand** 

### **Strukturmodell Schnitt**




**TOP 2: Projektstand** 

# **Strukturmodell Schnitt**

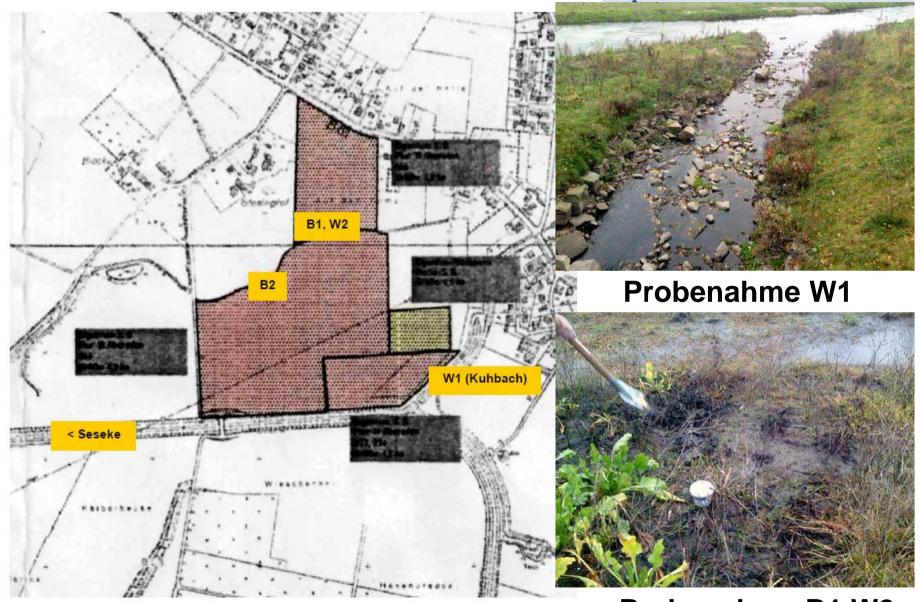


**TOP 2: Projektstand** 

# Modellkonzept geflutet




# **Modellparameter Startwerte**


| Matrix               | Horizontaler<br>K-Wert K <sub>h</sub> | Verhältnis<br>horizontaler/<br>vertikaler K-<br>Wert K <sub>h</sub> /K <sub>v</sub> | Porosität<br>n |
|----------------------|---------------------------------------|-------------------------------------------------------------------------------------|----------------|
| Schieferton          | 3*10 <sup>-9</sup> m/s                | 1/3                                                                                 | 0,02           |
| Sandstein, geklüftet | 7*10 <sup>-9</sup> m/s                | 1/1                                                                                 | 0,07           |
| Schieferton          | 3*10 <sup>-9</sup> m/s                | 1/3                                                                                 | 0,02           |
| Sandstein, geklüftet | 7*10 <sup>-9</sup> m/s                | 1/1                                                                                 | 0,07           |
| Schieferton          | 3*10 <sup>-8</sup> m/s                | 1/3                                                                                 | 0,02           |
| UTV                  | 1*10 <sup>-8</sup> m/s                | 1/1                                                                                 | 0,05           |
| Schieferton          | 1*10 <sup>-8</sup> m/s                | 1/3                                                                                 | 0,02           |
| Kohleflöz            | 3*10 <sup>-8</sup> m/s                | 1/1                                                                                 | 0,03           |
| Schieferton          | 3*10 <sup>-9</sup> m/s                | 1/3                                                                                 | 0,02           |
| Sandstein, geklüftet | 7*10 <sup>-9</sup> m/s                | 1/1                                                                                 | 0,06           |
| Schieferton          | 1*10 <sup>-9</sup> m/s                | 1/3                                                                                 | 0,02           |

# Mögliche tagnahe Beeinflussungen

#### Auffälligkeiten im Kuhbach und Boden (Dr. Krutz, 2011)



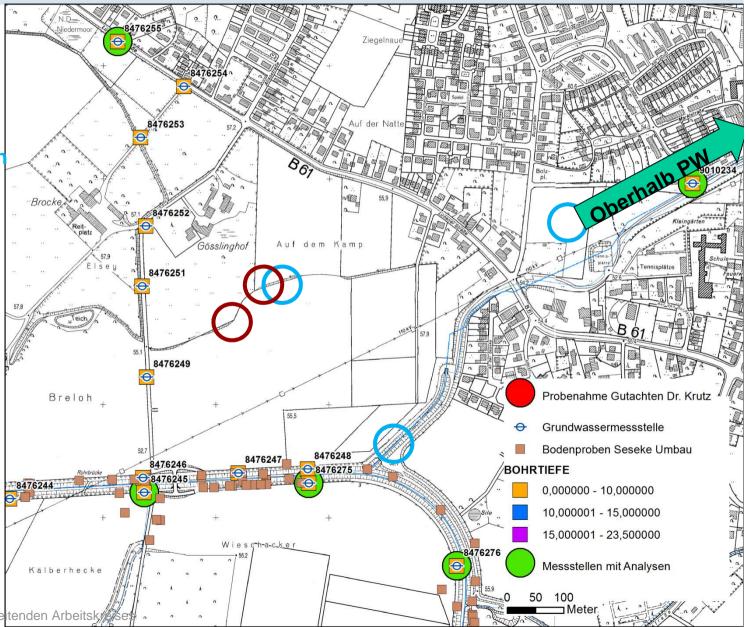
### Wasser- und Bodenprobenahme (Dr. Kurtz, 2011)



2. Sitzung des begleitenden Arbeitskreises

**Probenahme B1 W2** 

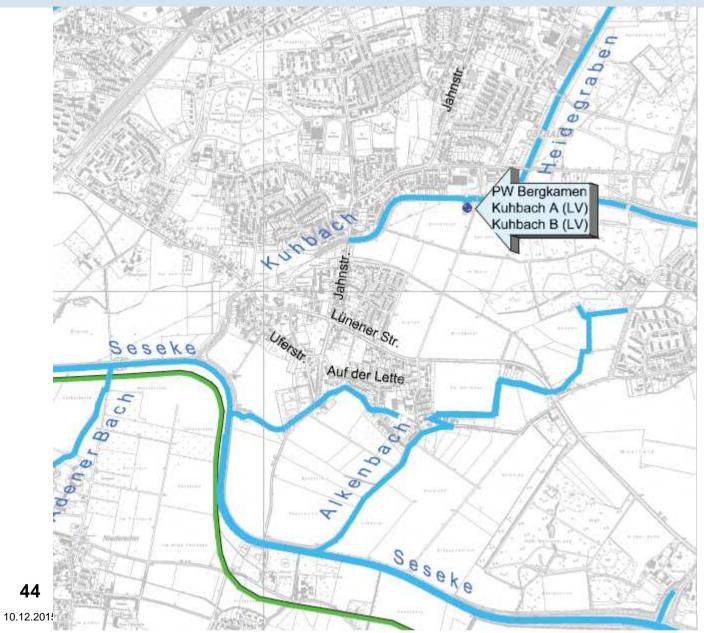
### Messstellennetz Lippeverband / Proben Dr. Krutz (2011)


**Fluorid** 

5-6 mg/l im Kuhbach + OFG

0,6 bis 0,8 mg/l im Boden

PAK 0,15-0,3 mg/kg Im Boden


Vorsorgewert: 10 mg/kg



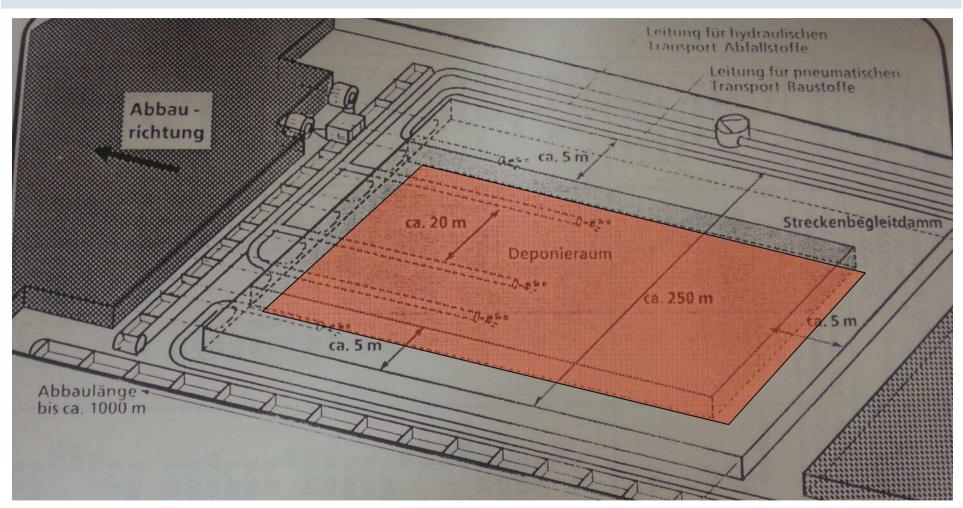
43

10.12.2015 2. Sitzung des begleitenden Arbeitsk

#### **Kuhbach**

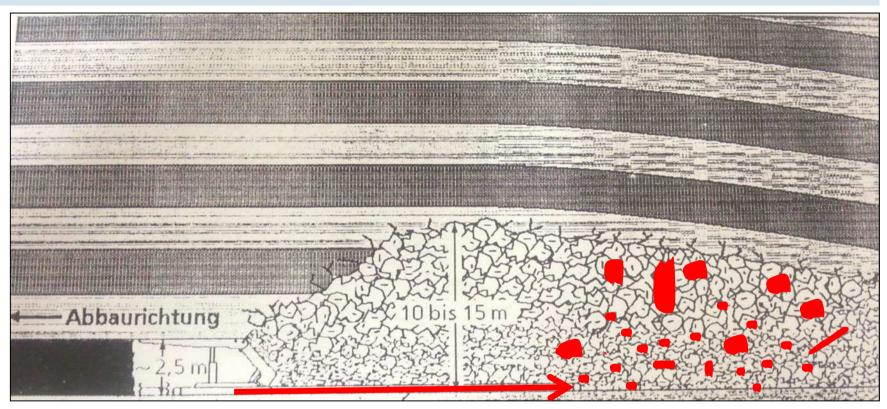





#### **Weitere Schritte**

- Auswertung vorhandener Daten des Lippeverbandes
- Ggf. Auswertung vorhandener Daten Kreis Unna
- Ggf. Messstellenergänzung
- Probenahme Grund- und Oberflächenwasserproben
- Mögliche Ursachen

#### Einführung Bruchhohlraumverfüllung (Prof. Preuße)

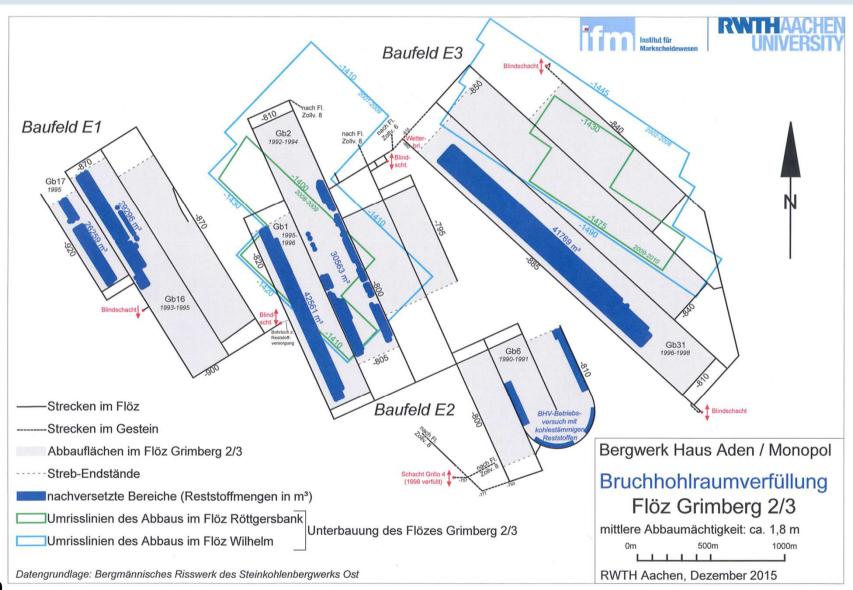

- Übertägige Herstellung noch pumpfähiger, hochkonzentrierter Feststoff-Wasser-Gemische aus bergbaustämmigen und bergbaufremden Reststoffen
- Dichte HMVA-Aschen ca. 1 t/m³, RAA-Schlamm ca. 1,1 t/m³
   (Angabe der Bezirksregierung Arnsberg)
- Transport der pastösen Masse über Rohrleitungen (DN150/DN100) nach untertage
- Als Förderenergie diente die Pumpenenergie, vor allem aber die hydraulische Säule in der Schachtleitung
- Einbringen des Versatzgutes in den Bruchhohlraum hinter dem Streb über Schlepprohre, die mit dem Schildausbau mitgerückt wurden

# Bruchhohlraumverfüllung



Jäger et al. (1991): "Machbarkeitsstudie", Bd. 4

#### Bruchhohlraumverfüllung




Jäger et al. (1991): "Machbarkeitsstudie", Bd. 4

# Die eingebrachte Reststoffmenge betrug bis zu 0,52 m³ je m² abgebauter Fläche

(Unterlagen BR Arnsberg)

# Auswertung des Bergmännischen Risswerks



#### **Weitere Schritte**

- Beschreibung und Bewertung der Prüfungs- und Zulassungsverfahren (IFM)
  - Ablauf, Validierung, Monitoring, Bewertung
- Eignung der Reststoffe als Versatzmaterial
  - Qualitätssicherungsprogramm BW Walsum (Wilke et a. 1995)
  - Hydrochemische Modellierungen Prof. van Berk
  - Gutachterliche Gesamtbeurteilung

**TOP 4: Gefährdungspotential BHV** 

# Massenbilanzierung (ahu AG)

| Bauhöhe *Abrechnungstag    | HMVA<br>Filterstaub (t) | RAA<br>Schlämme (t) | Verbrachte<br>Menge (t) | Verbrachte<br>Mengen (m³)<br>gemäß Risswerk |
|----------------------------|-------------------------|---------------------|-------------------------|---------------------------------------------|
| <b>Gb1</b><br>*11.06.1996  | 17.636                  | 23.438              | 41.074                  | 42.561                                      |
| <b>Gb2</b><br>*24.03.1995  | 5.184                   | 23.933              | 29.118                  | 30.563                                      |
| <b>Gb16</b><br>*06.01.1995 | 13.004                  | 16.974              | 29.725                  | 29.296                                      |
| <b>Gb17</b><br>*21.07.1995 | 11.105                  | 13.623              | 24.302                  | 26.259                                      |
| <b>Gb31</b><br>*18.02.1998 | 15.360                  | 27.509              | 42.869                  | 41.769                                      |
| Σ                          | 62.289                  | 105.478             | 167.087                 | 170.448                                     |

# **Definition "Immissionsneutrale Verbringung"**

"Immissionsneutralen Verbringung liegt vor, wenn nachgewiesen ist, dass durch die geogene Beschaffenheit des Grundwassers eine Auslaugung und zusätzliche Befrachtung des Grubenwassers mit Schadstoffen aus dem Versatzmaterial nicht möglich ist".

**Technische Regeln des** Länderausschusses Bergbau 52 (1994/1996)

| Parameter                   | Orientierungswert |            |  |  |
|-----------------------------|-------------------|------------|--|--|
| pH-Wert                     | 5,5 -13,0         |            |  |  |
| Leitfähigkeit               | < 50.000          | μS/cm      |  |  |
| TOC                         | < 100             | mg/l       |  |  |
| Phenole                     | < 50              | mg/l       |  |  |
| Arsen                       | < 0,5             | mg/l       |  |  |
| Blei                        | < 1               | mg/l       |  |  |
| Cadmium                     | < 0,1             | mg/l       |  |  |
| Chrom-VI                    | < 0,1             | mg/l       |  |  |
| Kupfer                      | < 5               | mg/l       |  |  |
| Nickel                      | < 1               | mg/l       |  |  |
| Quecksilber                 | < 0,02            | mg/l       |  |  |
| Zink                        | < 5               | mg/l       |  |  |
| Fluorid                     | < 25              | mg/l       |  |  |
| Ammonium-N                  | < 200             | mg/l       |  |  |
| Cyanide, leicht freisetzbar | < 0,5             | mg/l       |  |  |
| AOX                         | < 1,5             | mg/l       |  |  |
| Abdampfrück-<br>stand       | 6                 | Masse<br>% |  |  |

#### Keine Grenzwerte für "Vollständiger Einschluss"

"Eine Festlegung von Zuordnungswerten für das Einbringen von Versatz nach dem Prinzip des vollständigen Einschlusses ist nicht erforderlich, da durch den vollständigen Einschluss der Abfälle eine Gefährdung ausgeschlossen ist."

(LAB 1994/1996)

#### **Definition "vollständiger Einschluss"**

"Das Prinzip des <u>vollständiger Einschlusses</u> erfordert, dass die in dem Versatzmaterial enthaltenen Schadstoffe <u>dauerhaft</u> unter Tage eingeschlossen und auf diese Weise von der <u>Biosphäre</u> ferngehalten werden, so dass ihre Rückkehr zur Biosphäre nicht zu erwarten ist.

Dies setzt voraus, dass sich eine <u>möglichst vollständige</u>

<u>Abschirmung</u> des Versatzmaterials gegenüber dem

Grundwasser (Lösungen und Laugen) erreichen lässt und ein Transport von Schadstoffen bis in die Biosphäre verhindert wird".

54 (LAB 1994/1996)

# **Bandbreite Belastungen anorganische Stoffe**

| Bandbreiten – Konzentrationen im Feststoff |                   |               |                          |               |                         |               |               |              |
|--------------------------------------------|-------------------|---------------|--------------------------|---------------|-------------------------|---------------|---------------|--------------|
|                                            | Pb<br>[mg/kg]     | Cd<br>[mg/kg] | Zn<br>[mg/kg]            | TI<br>[mg/kg] | Cu<br>[mg/kg]           | Hg<br>[mg/kg] | Ni<br>[mg/kg] | V<br>[mg/kg] |
| Bandbreite                                 | 2.000 –<br>20.500 | 4 - 620       | 7.000 <b>–</b><br>60.000 | 2 - 4         | 1.300 <b>–</b><br>4.000 | 3 - 10        | 131 -<br>500  | 15 - 60      |

# **Bandbreite Belastungen anorganische Stoffe**

| Bandbreiten – Konzentrationen im Eluat DEV S4* |                |                   |                  |                 |                   |                   |               |                  |
|------------------------------------------------|----------------|-------------------|------------------|-----------------|-------------------|-------------------|---------------|------------------|
|                                                | Pb             | Cd                | Cr               | Cu              | Mn                | Hg                | Zn            | Chlorid          |
|                                                | [mg/l]         | [mg/l]            | [mg/l]           | [mg/l]          | [mg/l]            | [mg/l]            | [mg/l]        | [mg/l]           |
| Gb1                                            | 0,028 -        | <0,001 -          | <0,001 -         | <0,001 -        | <0,001 -          | <0,001 -          | <0,01 -       | 28 -             |
|                                                | 121            | 60                | 3,5              | 0,6             | 5,2               | 0,1               | 510           | 38.750           |
| Gb2                                            | 0,019 -        | <0,001 -          | <0,001 -         | 0,003 -         | <0,001 -          | <0,001 -          | 0,085 -       | 1064 -           |
|                                                | 78             | 0,014             | 0,914            | 0,2             | 0,014             | 0,002             | 9,1           | 16340            |
| Gb16                                           | 0,05 -<br>22   | <0,001 -<br>35    | <0,05 - 2,6      | 0,014 -<br>0,1  | <0,001 -<br>6,8   | <0,001            | 0,03 -<br>411 | 17 - 9540        |
| Gb17                                           | 0,051 -<br>177 | <0,001 -<br>0,197 | 0,003 - 1,5      | <0,001 -<br>0,4 | <0,001 -<br>0,014 | <0,001 -<br>0,007 | 0,05 -<br>3,6 | 41 -<br>26.840   |
| Gb31                                           | 0,4 - 16       | 0,006 -<br>43     | <0,001 -<br>0,38 | 0,015 -<br>0,06 | <0,001 -<br>6,2   | <0,001 -<br>0,002 | 0,04 -<br>392 | 3970 -<br>29.160 |
| Bandbreite                                     | 0,028 -        | <0,001 -          | <0,001 -         | <0,001-         | <0,001 -          | <0,001-           | <0,01-        | 17-              |
| Gesamt                                         | 177            | 60                | 3,5              | 0,6             | 6,8               | 0,1               | 510           | 38.750           |

#### Weitere Schritte: GP anorganische Stoffe

- Gesamtbewertung des Gefährdungspotentials Schwermetalle
- Menge, Toxizität, Löslichkeit der Schwermetalle

#### Stand der Bearbeitung PCDF/D (Prof. Schwarzbauer)

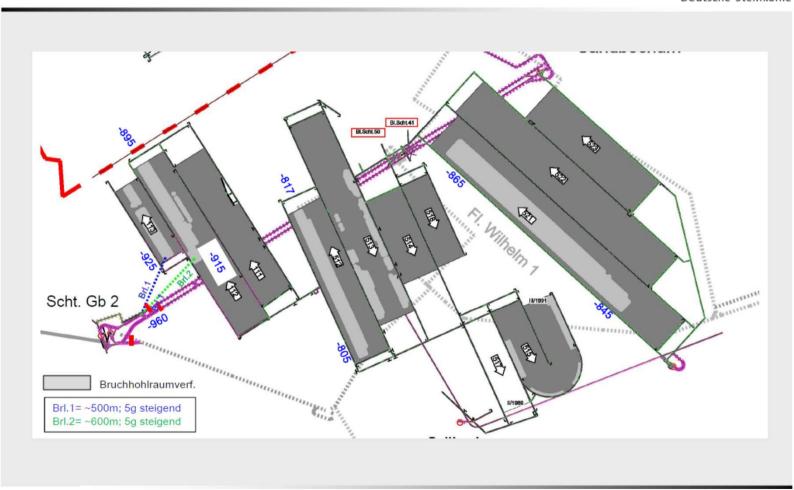
- Im Haus Aden / Monopol wurden ca. 167.000 t im vollständiger Einschluss verbracht, davon:
  - 62.300 t Filterstäube
  - 105.500 t RAA Schlämme / Flotationsberge
- Es liegen fünf Abschlussberichte zum vollständigen Einschluss vor
  - Bauhöhen GB 1, GB 2, GB 16, GB 17 und GB 31
  - chemische Analysen für Filterstäube liegen vor (PCDF/D)
  - Reststoffanalysen für RAA-Schlämme und Flotationsberge liegen nicht vor

# **Massenbilanz PCDF/D**

| D. L. Wh. Alif II |                 | analysierter |            | Reststoffversatz | PCDF   | PCDD     | PCDF/D   |
|-------------------|-----------------|--------------|------------|------------------|--------|----------|----------|
| Bauhöhe           | auhöhe Abfall   |              | offversatz | gesamt           |        |          |          |
|                   |                 | %            | [t]        | [t]              | [g]    | [g]      | [g]      |
|                   | Filterstaub     | 99,89        | 17.616,24  | 17.636,01        | 960,72 | 1.193,27 | 2.153,98 |
| GB1               | RAA-<br>Schlamm | -            | -          | 23.437,91        | -      | -        | -        |
|                   | Filterstaub     | 100,00       | 5.227,49   | 5.184,10         | 414,63 | 870,00   | 1.284,63 |
| GB2               | RAA-<br>Schlamm | -            | -          | 23.933,46        | 1      | -        | -        |
|                   | Filterstaub     | 97,54        | 12.684,32  | 13.003,70        | 652,88 | 560,15   | 1.213,03 |
| GB16              | RAA-<br>Schlamm | -            | -          | 16.974,42        | -      | 1        | -        |
|                   | Filterstaub     | 97,49        | 10.827,19  | 11.105,45        | 744,71 | 1.002,32 | 1.747,03 |
| GB17              | RAA-<br>Schlamm | -            | -          | 13.623,04        | -      | -        | -        |
|                   | Filterstaub     | 85,67        | 13.159,17  | 15.359,87        | 523,56 | 368,49   | 892,05   |
| GB31              | RAA-<br>Schlamm | -            | -          | 27.509,31        | -      | -        | -        |
|                   | Unbekannt       | -            | -          | 113.244,00       | -      | -        | -        |
|                   | !               | !            | ı          |                  |        | <b>C</b> | 7 200 72 |

Summe 7.290,73

#### Weiteres Vorgehen PCDF/D

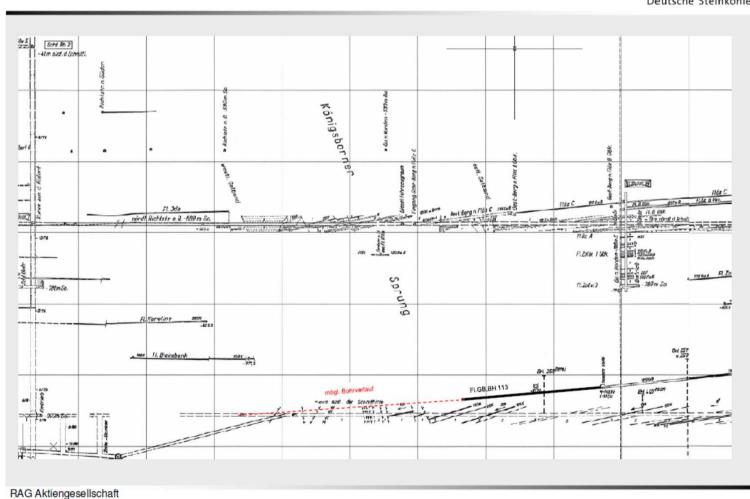

- Abschätzung potentieller umweltrelevanter organischer Inhaltsstoffe durch sekundäre Informationen
- Auswertung wissenschaftlicher Studien bzw. Berichte zu Filterstäuben, RAA Schlämmen und Flotationsrückständen
- Zusammenfassung möglicher Inhaltsstoffe und zugehörige Risiko-/Ausbreitungspotentiale

# Beprobungsmöglichkeiten BHV

#### Mögliche Untertagebohrung von Flöz 113 (ahu AG)

ZWH Haus Aden, BF Monopol, Flöz Grimberg



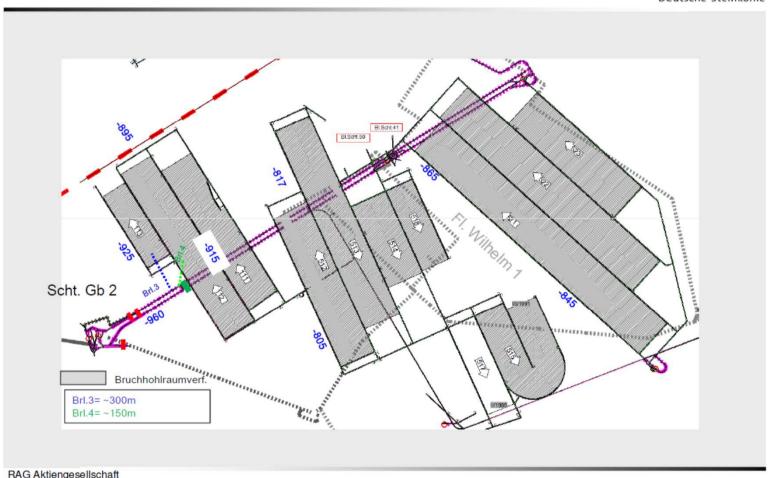



500 bis 600 m, leicht ansteigend Königsborner Sprung durchbohrer

#### Mögliche Untertagebohrung von Flöz 113

ZWH Haus Aden, BF Monopol, Schnitt mögl. Bohrverl.






Servicebereich Technik- und Logistikdienste

# Mögliche Untertagebohrung (mit Dammöffnung)

#### ZWH Haus Aden, BF Monopol, Flöz Grimberg





RAG Aktiengesellschaft Servicebereich Technik- und Logistikdienste

#### Aktuelle Erfahrungen der RAG mit Bohrungen

- Horizontalbohrung (680 m Länge) auf Zeche Carolinenglück
   Dauer ca. 3 Jahre
- Vertikalbohrung (Tiefe 736 m Zeche Möller Rheinbaben)
- Eingestellt 1967, Wasserhaltung bis 1971
- Ausbau 150 mm, Dauer ca. 2 Jahre.
- Kosten ca. 2,5 Mio. €. Die Bohrung verlief ohne größere Schwierigkeiten (keine Alten Männer durchbohren).

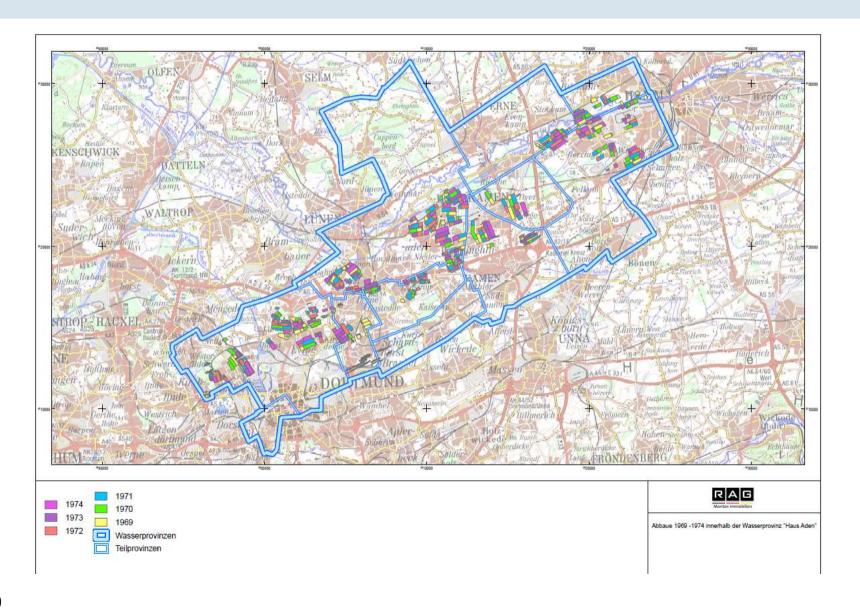
#### **TOP 5**

# PCB

#### 5.1 Stand Landesbericht PCB-Sondermessprogramm

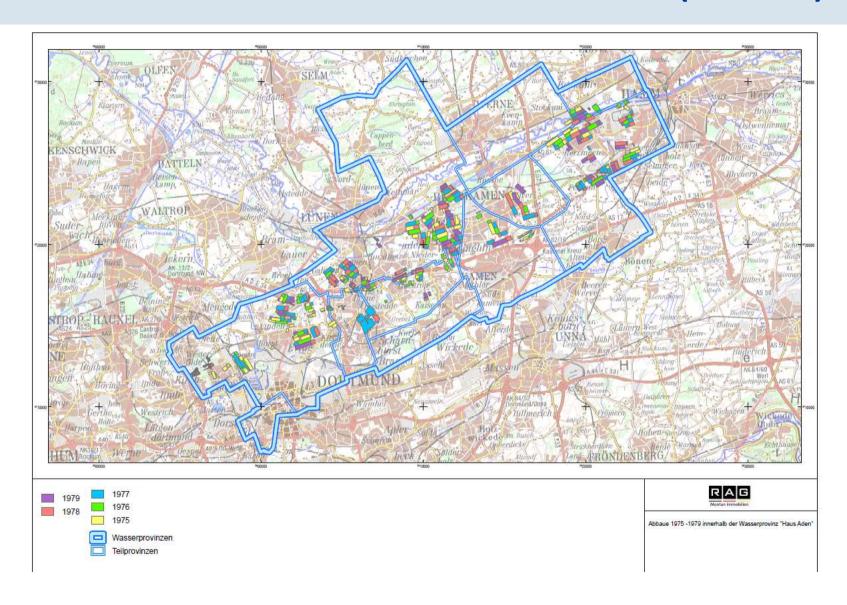
# Dr. Vietoris Anl. 3

#### 5.2 Stand der Bearbeitung (Prof. Schwarzbauer)


- Abschluss der Sichtung aller bislang vorliegenden Unterlagen
- erste grobe Abschätzung der eingesetzten PCB-Mengen und Lokalitäten in Haus Aden / Monopol
- Angaben für TCBT nicht vorhanden
- Erste chemische Charakterisierung der PCB- und TCBT-haltigen Betriebsmittel
- Erarbeitung einer Empfehlung zum Grubenwassermonitoring
  - Bewertung der Probenahmetechnik
  - Untersuchungsfrequenz
  - Parameter

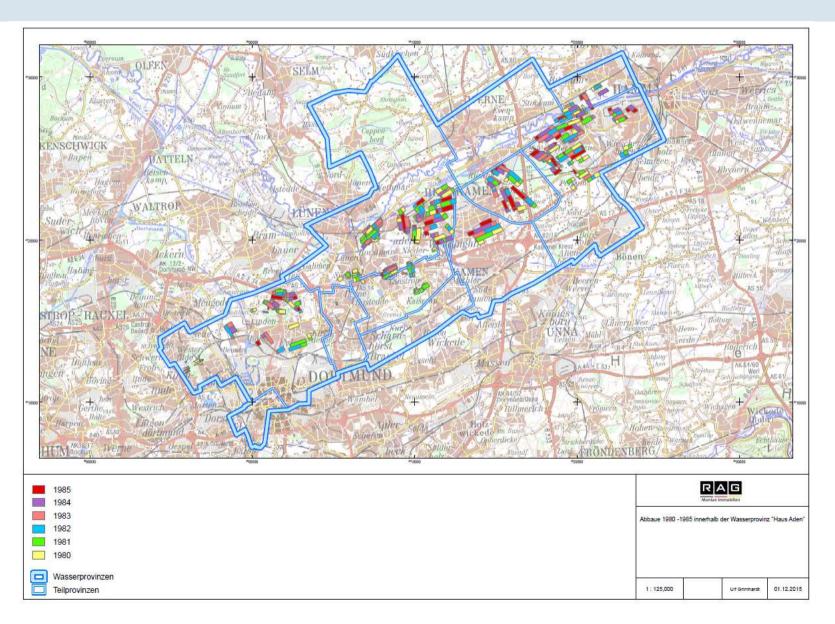
# 5.2 Stand der Bearbeitung (Prof. Schwarzbauer)

| Quelle                                                     | Lippe | НА |
|------------------------------------------------------------|-------|----|
| Untersuchungen von Grubenwasser und Kohlenwaschwasser 1986 |       | X  |
| Abschlussberichte 1995 – 1998                              |       | X  |
| Gewässergütebericht 2000                                   | X     |    |
| Gewässergütebericht 2001                                   | X     |    |
| LANUV-Fachbericht 6                                        | X     | X  |
| Sondermessprogramme Bergbehörde 2010, 2013                 |       | X  |
| PCB Ergebnisse aus dem Gewässermonitoring ab 2001          | X     |    |
| Monitoring Grubenwässer 2010-2014                          |       | X  |
| Sonderuntersuchung an Schwebstoff in Grubenwässern 2015    | X     | X  |

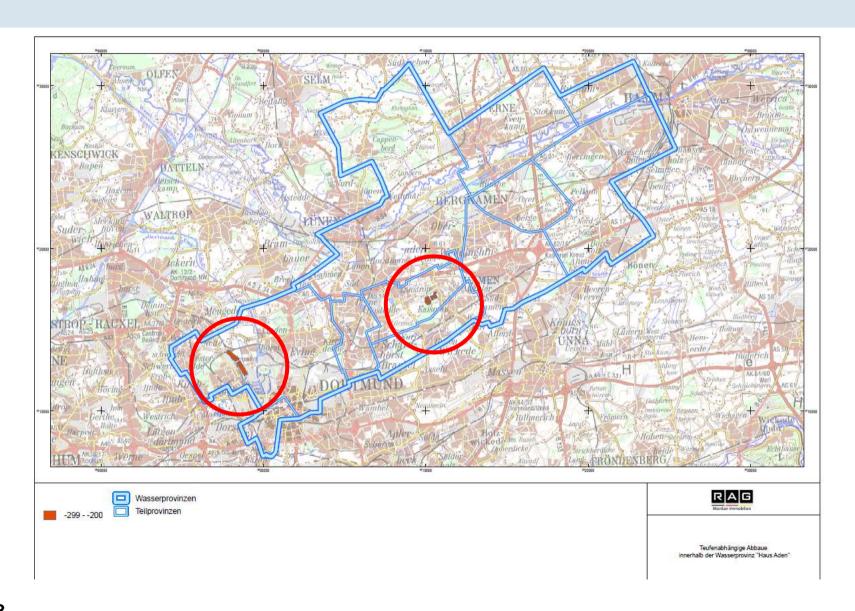

#### **TOP 5: PCB**

# Abbaue während der Einsatzzeit von PCB (1969-74)

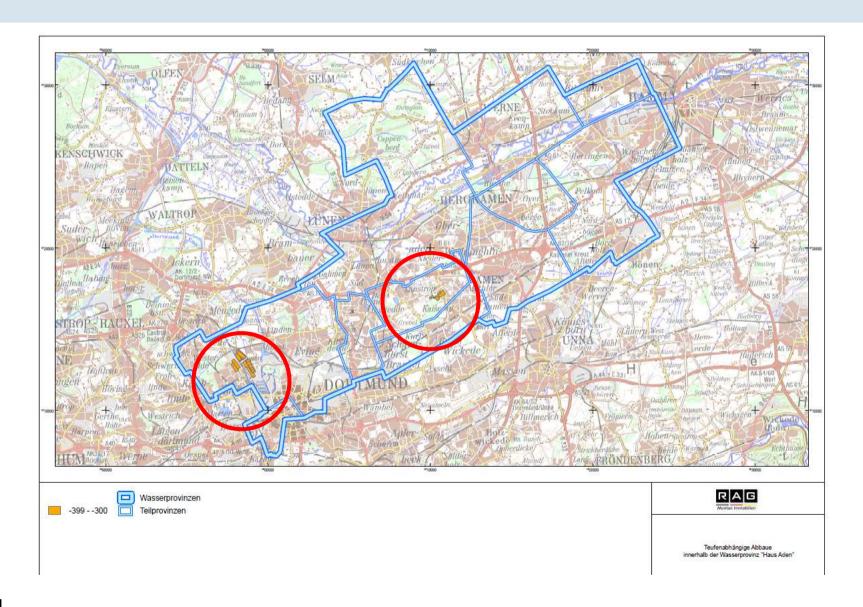



#### **TOP 5: PCB**

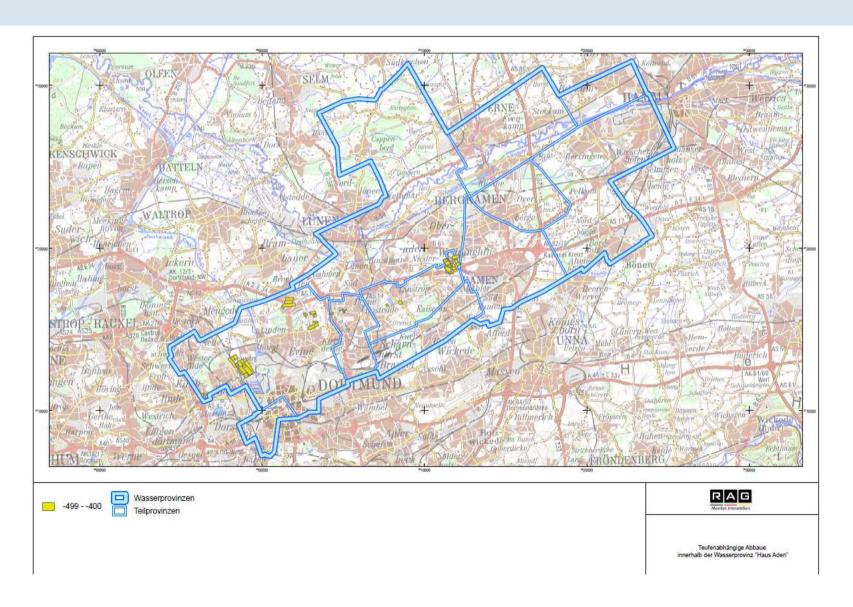
# Abbaue während der Einsatzzeit von PCB (1975-79)



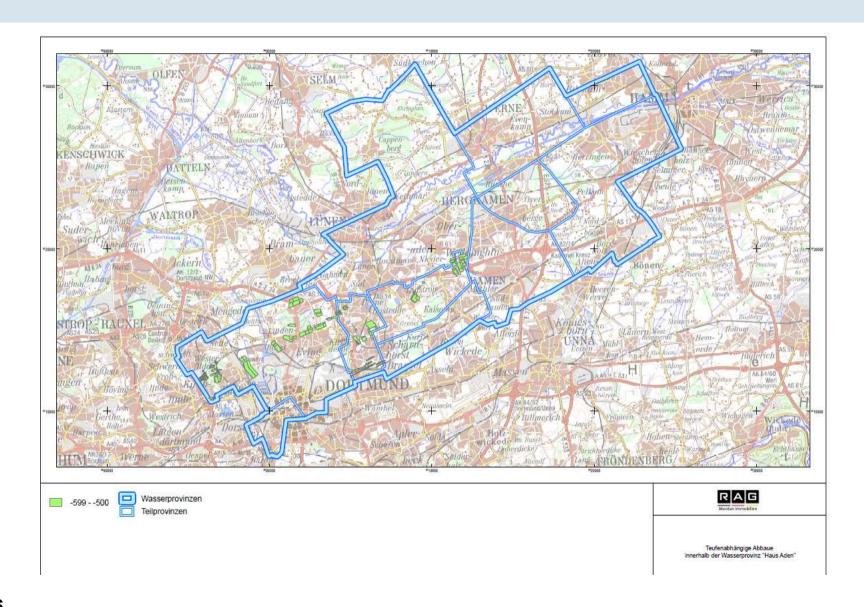

#### **TOP 5: PCB**


# Abbaue während der Einsatzzeit von PCB (1980-85)

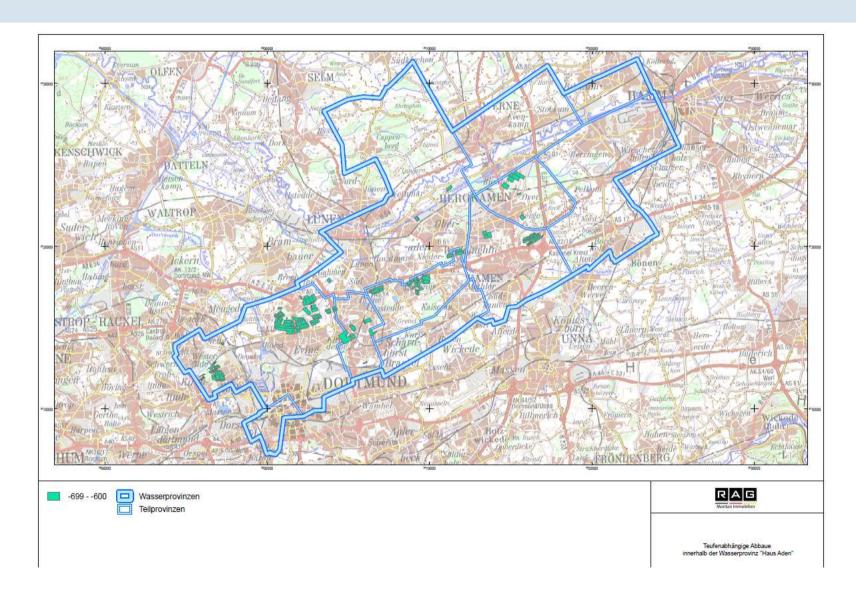



### Abbaue während der Einsatzzeit von PCB: 200-300m

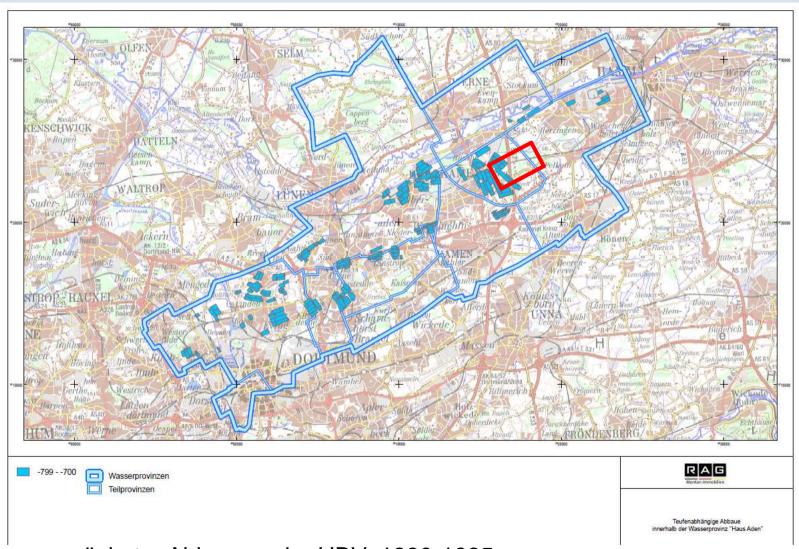



### Abbaue während der Einsatzzeit von PCB: 300-400m



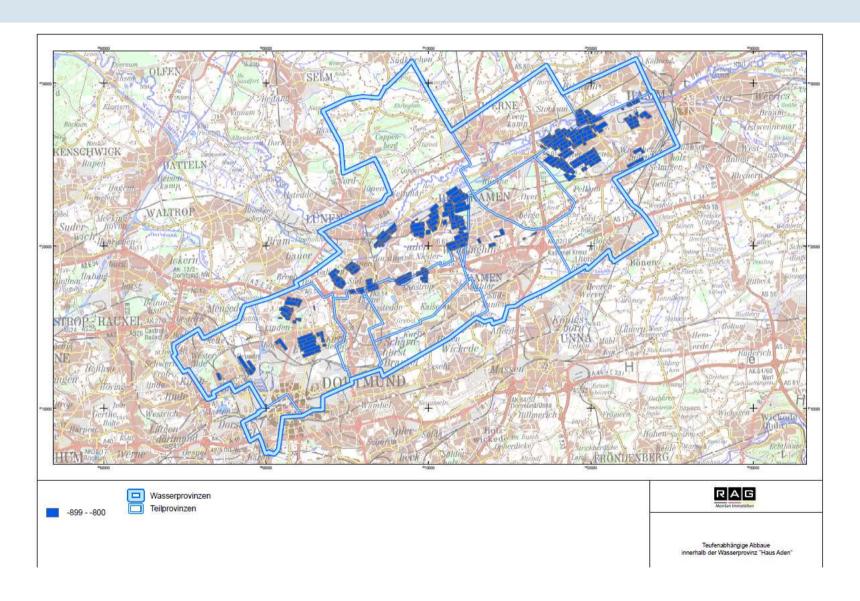

### Abbaue während der Einsatzzeit von PCB: 400-500m



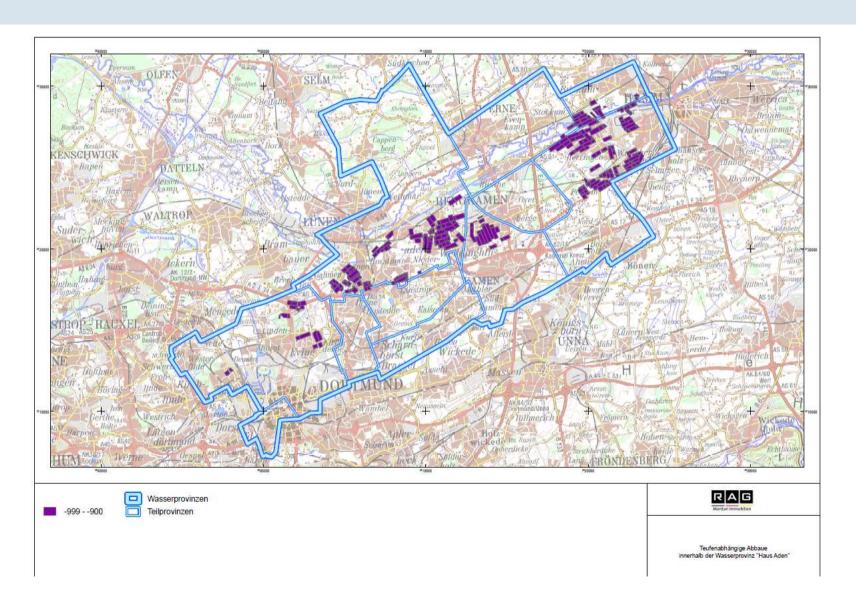

### Abbaue während der Einsatzzeit von PCB: 500-600m



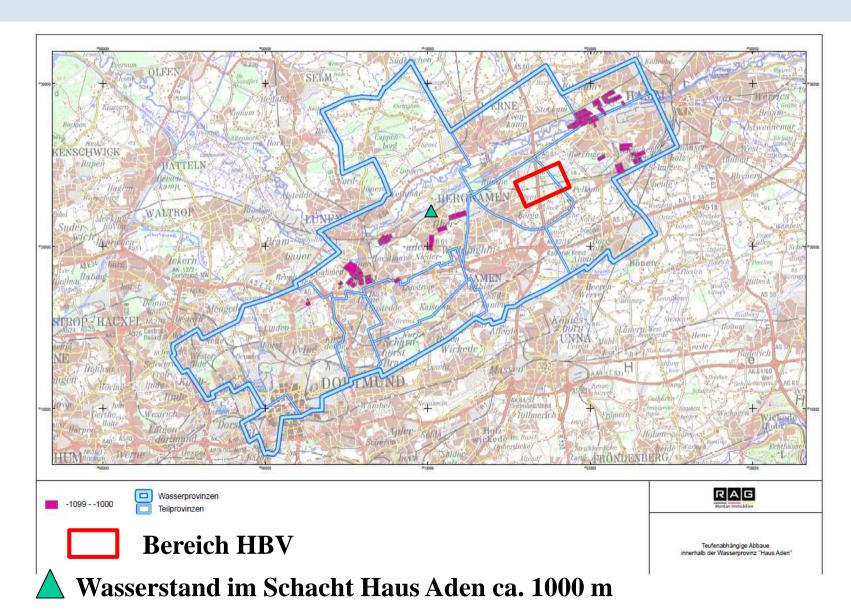
### Abbaue während der Einsatzzeit von PCB: 600-700m



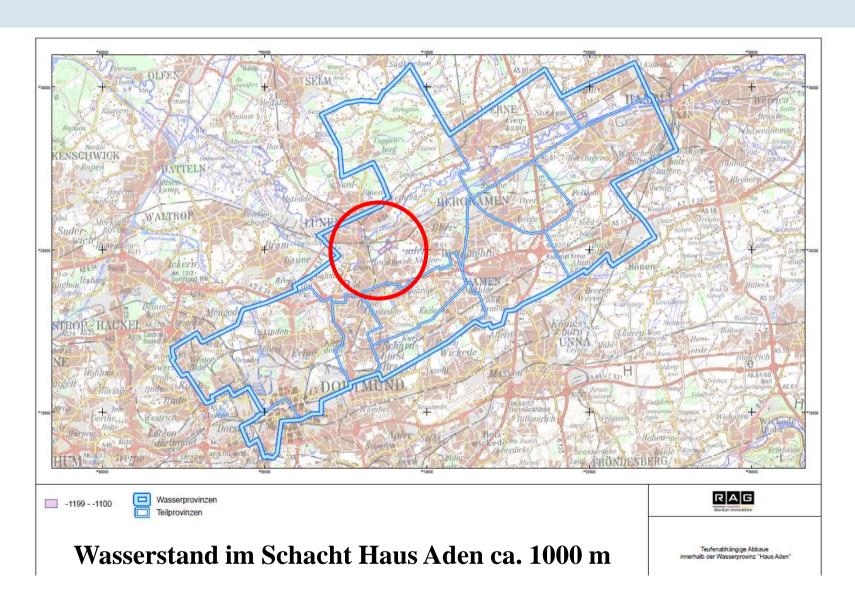

# Abbaue während der Einsatzzeit von PCB: 700-800m



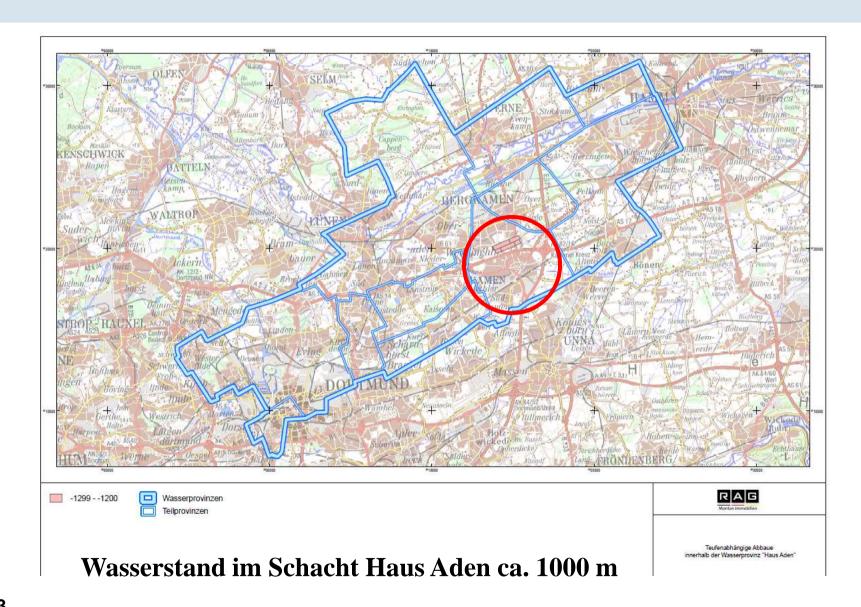

nächster Abbau an der HBV: 1980-1985


### Abbaue während der Einsatzzeit von PCB: 800-900m

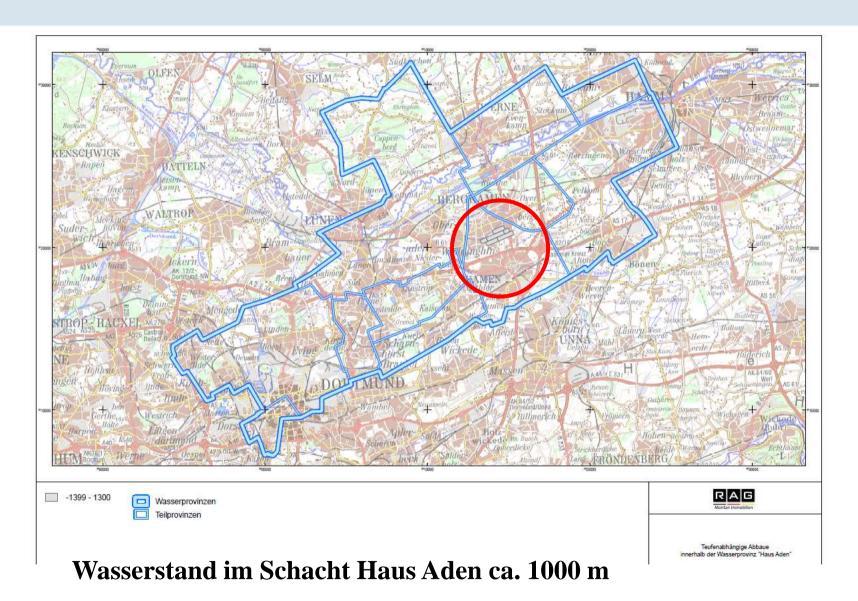



# Abbaue während der Einsatzzeit von PCB: 900-1000m




#### Abbaue während der Einsatzzeit von PCB: 1000-1100m




#### Abbaue während der Einsatzzeit von PCB: 1100-1200



#### Abbaue während der Einsatzzeit von PCB: 1200-1300



#### Abbaue während der Einsatzzeit von PCB: 1300-1400



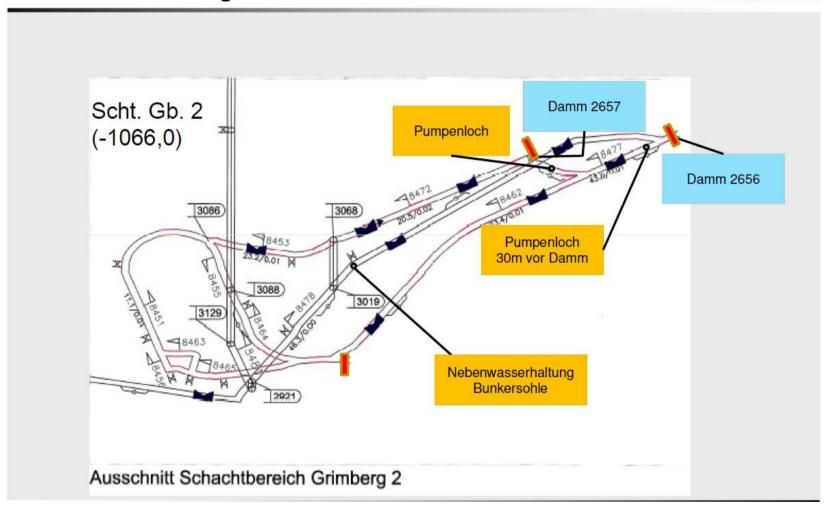
# Schlussfolgerungen Verbreitung PCB

- Bisher keine Hinweise auf Punktquellen (1. AK PCB)
- Disperse Freisetzung
- Partikelassoziierter Transport
- RAG prüft noch Verbringung von Schlämmen etc.

 Worst Case Annahme: Dispers verteilt in den oben dargestellten Abbaubereichen

#### 5.3 Bericht aus dem AK PCB am 16.11.2015

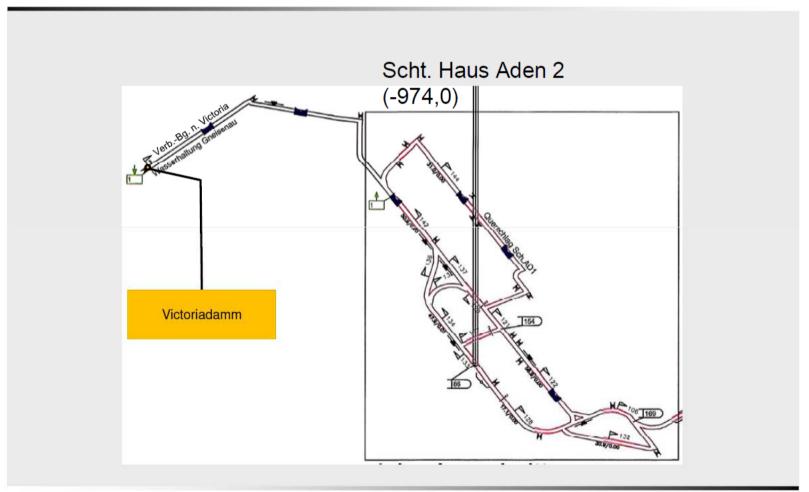
# Dr. Rahm (LANUV) Anl. 4


# Untertägige Untersuchungskampagne (Prof. Schwarzbauer)

- Grubenwasserteilströme (10L Methode) Ziel: 0,5 g
   Schwebstoffe. Ggf. Probendotierung
  - Ermittlung eines <u>Verteilungskoeffizienten</u> von PCB zwischen Grubenwasser-bürtigem Schwebstoff und Wasser.
  - Abschätzung der PCB, die maximal gelöst im Grubenwasser vorliegen.
- Untersuchung einer großvolumigen Probe (100L) auf gelöste PCB
- Schlammproben aus Pumpensumpf und/oder Beruhigungsstrecken
- Je nach Zugänglichkeit weitere Staub-/ Boden- / Wasserproben

# Mögliche Probenahmepunkte Schacht Grimberg

#### Haus Aden - Mögliche Probenahmestandorte am Schacht Grimberg






# Mögliche Probenahmepunkte Schacht Haus Aden

# Haus Aden – Mögliche Probenahemstandorte am Schacht Haus Aden





2

# Weiteres Vorgehen

- Vervollständigung der Abschätzung der eingesetzten PCB- und TCBT-Mengen in Haus Aden / Monopol
- Zuordnung zur räumlicher Verteilung
- Abschätzung zu Freisetzungs- und Ausbreitungspotential auf Basis der neuen Analysenergebnisse (Staub/Schlämme, Verteilungskoeffizient)

# Stand der Datenerhebung

# **Aufbau Unterlagenverzeichnis**

- Basisgutachten (Grundlage für Ausschreibung und Angebot)
- Bruchhohlraumverfüllung und Grubenbaue (IFM, Prof. Preuße)
  - projektspezifische Unterlagen
  - Relevante Gutachten, Fachliteratur
- Hydrogeologie / Hydrochemie / Grubenwasser (ahu AG, LFH, Prof. Rüde)
  - projektspezifische Unterlagen, Fachliteratur
- PCB (LEK, Prof. Schwarzbauer)
  - projektspezifische Unterlagen, Fachliteratur
  - Untersuchungsdaten PCB in Oberflächenwasser und Grubenwasser
- Grundwasserströmungsmodellierung (delta h)
  - projektspezifische Unterlagen, Fachliteratur
- Freisetzungspotential (Prof. van Berk)
  - projektspezifische Unterlagen, Fachliteratur

#### **TOP 6: Unterlagenverzeichnis**

# **Stand Unterlagenverzeichnis**

Unterlagenverzeichnis: Stand: 12.11.2015¶

1

Die folgenden Unterlagen werden im Rahmen der gutachtlichen Bearbeitung beschafft und ausgewertet. Diese Liste wird entsprechend der Bearbeitung fortgeschrieben.¶

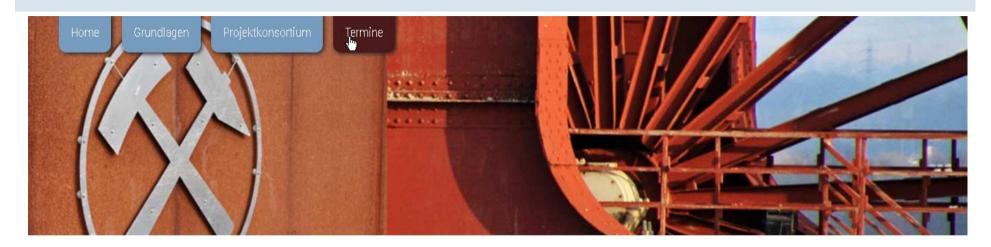
¶

| <u>N</u> r¤ | Titel¤                                                                                                                                                                                                                                                                                                                                                    | Datum¤                       | Verfasser¤                                                                  | Umfang¤ | Eingang·/·<br>Standort¤                          | Inhalt¤ | II II | Sonstiges |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------|---------|--------------------------------------------------|---------|-------|-----------|
|             |                                                                                                                                                                                                                                                                                                                                                           |                              | 1.⋅Basisguta                                                                | chten¤  |                                                  |         | _     |           |
| 1¤          | Entwicklung- eines-Verfahrens- für-das-<br>Einbringen-von-Flugasche- und- anderen-<br>feinkörnigen- Verbrennungsrückständen- in-<br>untertägige- Bruchhohlräume¤                                                                                                                                                                                          | 1986¤                        | Bundesministerium für<br>Forschung und<br>Technologie (BFT)¤                | 26·S¤   | Angebotsaufforderu<br>ng¶<br>¶<br>Projektserver¤ | ¤       | ahu¤  | S.        |
| 2¤          | Teil- und Nachversatz- mit Reststoffen aus kohlegefeuerten Kraftwerken und Feuerungsanlagen (Aschen, und Stäube, Naßentschwefelungsgips, -sulfit, Schlämme aus der Kessel-abwasser- und Speisewasseraufbereitung und aus der Kühlturmabschlämmung                                                                                                         | 16.12.87·und-<br>28.12.1987¤ | Rundverfügungen· des<br>Landesoberbergamts·<br>NRW·(LOBA)-18.21.2·-<br>2-4¤ | 9·S¤    | Angebotsaufforderu<br>ng¶<br>¶<br>Projektserver¤ | ¤       | Ahu¤  | Ω         |
| 3¤          | Abschlussbericht: Verhalten von mobilisierten Schadstoffen in der Umgebung von Untertagedeponien¤                                                                                                                                                                                                                                                         | 1991¤                        | DMT∞                                                                        | 170·S¤  | Angebotsaufforderu<br>ng¶<br>¶<br>Projektserver¤ | 23      | Ahu¤  | ¤         |
| 4¤          | Entwicklung- und- Erprobung- eines - Verfahrens-<br>für- das Einbringen- feinkörniger - Aufbereitungs-<br>und- Kraftwerksabgänge - in- untertägige<br>Bruchhohlräume - Forschungsbericht - 0326416-<br>B-Energieforschung- und- Energietechnologien-<br>im- Auftrag- des - Bundesministeriums - für-<br>Enrschung- und - Technologie - Teilkortahon- III- | 1991¤                        | Scheidat L. & Brocks U. a                                                   | ¤       | Angebotsaufforderu<br>ng¶<br>¶<br>Projektserver¤ | ¤       | Ahu¤  | in in     |

#### **TOP 6: Stand der Datenerhebung**

# Homepage




#### Prüfung möglicher Umweltauswirkungen von Abfall- und Reststoffen zur Bruch-Hohlraumverfüllung in Steinkohlenbergwerken in Nordrhein-Westfalen

Zur Durchführung dieser Prüfung haben das Ministerium für Klimaschutz, Umwelt, Landwirtschaft, Natur- und Verbraucherschutz (MKULNV) und das Ministerium für Wirtschaft, Mittelstand und Energie des Landes Nordrhein-Westfalen (MWEIMH) am 16.07.2015 einen Auftrag an ein Gutachterkonsortium unter Federführung der ahu AG Aachen erteilt.

Die Erstellung des Gutachtens wird durch einen Arbeitskreis begleitet. Auf dieser öffentlichen Seite finden Sie Informationen zum Gutachterauftrag und der Arbeit des Arbeitskreises.

#### **TOP 6: Stand der Datenerhebung**

# **Termine / Arbeitskreis**



#### Arbeitskreissitzungen

#### AK 1 am 15. September 2015

- Einladung, PDF 106 KB
- Protokoll
- · Anlage 1: Teilnehmer
- Anlage 2: Vortrag des Konsortiums
- Anlage 3: Anforderungen der Stadt Gelsenkirchen an PCB-Probenahme und Metadaten
- Anlage 4: Auswertungen Dr. Friedrich PCB-Belastungen in Gewässern
- Anlage 5.1: Anschreiben Dr. Friedrich MKULNV 20 09 2015
- Anlage 5.2: Problemkreis 1 Anforderungen an einen Arbeitskreis PCB
- Anlage 5.3: Problemkreis 2 Verzeichnis der Anlagen
- Anlage 5.4: Zusammenfassung der inhaltlichen Forderungen an das in der Erarbeitung befindliche Gutachten

# Verschiedenes Termine

#### Aufbau und Inhalt Zwischenbericht I

- 1. Anlass und Aufgabenstellung
- 2. Vorgehensweise / bisherige Arbeiten
- 3. Bruchhohlraumverfüllung (IFM)
- Begriffsdefinition, Abfallrechtliche Einordnung
- Technischer Ablauf der Bruchhohlraumverfüllung
- Generelle Anforderungen
- 4. Stand der Arbeiten bei der Ermittlung Gefährdungspotential (ahu AG)

#### Aufbau und Inhalt Zwischenbericht II

- 5. Stand: Beschreibung und Bewertung der Prüfungs- und Zulassungsverfahren (IFM)
  - Ablauf, Validierung, Bewertung
  - Eignung der Reststoffe als Versatzmaterial
- 6. Stand: Hydrogeologisches / hydrochemisches System (ahu /LFH)
- 7. Freisetzungspotential: Stand hydrochemische Modellierung (van Berk)
- 8. Ausbreitungspotential: Stand des Grundwasserströmungsmodell (delta h)
- 9. Weiteres Untersuchungsprogramm (ahu)
- 10. Weitere Datenerhebung (ahu)

# Übersicht über die AK-Termine in 2016

- AK 3: 10.03.2016

**AK 4: 24.05.2016** 

# Und schon ist Ende